EE 374: Fundamentals of Blockchain Infrastructure Stanford, Spring 2025

Lecture 8: The Road to Tendermint
April 23, 2025

Lecturer: Prof. David Tse Scribe: Natalia Kokoromyti

Lecture Overview

This lecture introduces a classical consensus protocol in contrast to Nakamoto-style consensus.
The focus is on consensus in a proof-of-stake (PoS) setting, where participants have one vote each.
The protocol is leader-based and the leader rotates dynamically. This lecture lays the groundwork
for understanding deployed protocols like Tendermint by focusing on how to ensure both protocol
liveness and safety.

Course Logistics

e Homework 3 due on Friday April 25, 11:59 PT.

e Take-home midterm date / time: from May 12, 4:30 pm to May 13, 4:30 pm. We have 24
hours to complete it.

1 A Brief Timeline of Consensus Protocols

e Lamport: ”The Byzantine Generals Problem” (achieving consensus in a distributed system
is impossible if one-third or more of the participants are malicious).

e Dwork, Lynch, Stockmeyer: consensus under partial synchrony.

e Castro and Liskov: Practical Byzantine Fault Tolerance (PBFT).

e Kwon and Buchman: deployed Tendermint, a PBFT variant for blockchain.
e HotStuff and improved linear PBFT (Facebook Libra consensus).

e Aptos: protocol variant from HotStuff which made it easier to build upon and scale web3

infrastructure.
L ® L ® *—>
Lanigcg):t 18] 1988 1999 2014 Present
P Dwork, Lynch, Castro and Liskov [3] Kwon and Buchman [2]

(creator of LaTeX, Stockmeyer [6] (PBFT) (Tendermint) HotStuff [9] s AptOS[l]

Lamport Signatures)

1.1 Tendermint’s Impact

We’ll dive into the inner workings of Tendermint in a future lecture, yet it is important to con-
textualize its role in the evolution of consensus protocols. Tendermint marked a turning point by
enabling modular blockchain development. As the consensus engine behind Cosmos, it introduced
an SDK allowing anyone to easily launch application-specific blockchains. This modularity encour-
aged a surge of new projects and led to rapid progress. Several years after Tendermint launched,
Ethereum transitioned to proof-of-stake. While both aimed to improve scalability and security,
they took different architectural approaches.

2 Fundamentals: Proof-of-Stake Consensus

2.1 PKI and Message Authentication

Public-key infrastructure (PKI) ensures all messages can be authenticated in the network. Each of
the n nodes possesses exactly one key pair, denoted by (pk;, sk;) for i = 1,...,n. This mechanism
differs from Nakamoto’s protocol, where block proposal eligibility is determined by hash power
rather than ownership of coins.

Note that in PoS systems, coins change hands over time as ownership is determined by the consensus
protocols. Here, however, we assume that coin ownership is fixed. The more general case will be
discussed in a future lecture.

2.2 Height-by-Height Consensus

In height-by-height consensus, consensus happens at each block height independently. Nodes agree
on one block per height through rounds of proposal and voting. Unlike Nakamoto consensus, where
blocks implicitly vote for earlier blocks, here consensus is reached explicitly through rounds of votes
per height. That is, it’s not blocks confirming blocks, but votes confirming blocks. This structure
forms the foundation for protocols like Tendermint and PBFT.

2.3 Basic Protocol (ldeal Setting)

e Denote by A the network delay.
e At time 0, a designated leader (e.g., Node 1) proposes a block.

e Nodes wait until time A, and upon receiving one or more proposed blocks, they vote on the
first one they received and broadcast these signatures to everyone else.

e If by time 2A, > ¢ votes are collected during the previous A, the block is confirmed. That
is, any client that observes > ¢ votes for a block confirms that block.

e If no quorum is observed, no block is confirmed, and the next round starts at time 2A with
the new leader proposing another block.

e Once a block is confirmed at a given height, the network proceeds to the next height.

Assumption: We assume that all nodes have access to perfectly synchronized clocks.

2.4 Why the Protocol Can’t Stop at 2A

A malicious leader could make sure no block is confirmed by proposing multiple blocks instead of
one, by proposing a block late (e.g. at time %), or by proposing no block at all. However, the
protocol cannot simply stop at 2A; since doing so would break liveness (there would be no block
in this height and the blockchain would not be able to continue). To make sure the blockchain
is always live, the next leader needs to take over at 2A and propose a new block to continue the
process.

3 Adversarial Attacks and Protocol Robustness

3.1 Assumptions on the Adversarial Model

We assume a fixed number of nodes n, with f of them being adversarial (f < n). We also assume
that the signature scheme is still secure—i.e., adversaries cannot forge signatures. The variable
f represents the number of adversarial nodes, and the protocol’s security guarantees depend on
bounding f relative to the total number of nodes n.

3.2 Bounding f for Liveness: Attack #1 (Honest Leader)

If the adversary doesn’t vote, an honest leader’s block may not get confirmed. This would happen
if f nodes didn’t vote and the number of honest nodes ended up incapable of establishing a quorum.
In other words, if n — f < ¢ = f > n — ¢, the protocol wouldn’t be live anymore. Therefore, a

necessary condition for liveness is:

3.3 Bounding [for Safety: Attack #2 (Adversarial Leader)

In this attack, assume that the adversarial leader proposes 2 blocks during round 1 and both of
them get confirmed (meaning each receives at least g votes). Equivocation refers to the behavior
of a node voting for both blocks (”double voting”). In contrast, honest nodes only vote for the first
block they observe and never equivocate. Let V; and V5 be the sets of voters who voted for blocks
By and Bs, respectively, both proposed at the same height and round. We know that |V; UVa| < n.
Also,

Vil =g, [ValZaq [+

Honest nodes vote only once per round, on the first block they see, so any node appearing in both
V1 and V5 must be adversarial. Therefore, the adversarial nodes are at the intersection V3 NV; (see
Figure 1 below).
The attack will be successful if f > V3 NV5. Can we bound the size of this intersection to find how
big f needs to be for the safety attack to be successful? By the inclusion-exclusion principle, it
follows that

ViU V| = Vi + [V2| = [Vi N V2

By construction, the total number of voters is at most n, thus:

ViUVa| <n=|Vi|+|Vo| = |[VinW| <n=|VinVy > |Vi|+|Va] —n

Vl V2

(votes on (votes on
By) B3)

Figure 1: Venn Diagram of Voting Process

which combined with [] gives:
VinVal>qg+q-—n=2¢-n
Thus, for the attack to succeed:
f2vine|>2¢—n=f>2¢—n
This gives a necessary condition for safety:
Combining this with the earlier liveness condition f < n — g, we’ve derived two conditions:
Liveness: f <n—¢q and Safety: f <2q—n

To ensure both safety and liveness, we choose ¢ such that both conditions are satisfied. The optimal
choice is where the two inequalities intersect (see Figure 2 below):

™
773
By plugging ¢* = %” into the liveness and safety conditions, we find:
2n n
< — * = _— = —
fsn—a=n=gy=3
2n n
<2¢*—n=2|—)—-n=—
reo-n=2(5)-n=}

Thus, the protocol remains both safe and live as long as the number of adversarial nodes is at most

5]

INE)

Liveness: fsn—q
—— Safety: f<2g—-n

—2n
=3

gy N

Figure 2: Conditions for Safety and Liveness

Notice that the protocol tolerates up to f* = 7 adversarial nodes, in contrast to Nakamoto’s

51% attack. In terms of latency though, the protocol can achieve fast confirmation (on the order
of seconds) compared to Nakamoto’s 10 minute block time.

Remark: Liveness Failures Are Tolerable, Safety Failures Are Not. In practice, liveness failures
where there is a temporary halt in block production can often be tolerated. An example that was
discussed in class was the Solana blockchain that occasionally goes down but resumes operation
without the token collapsing. Not only that but there have been instances when the network sees
price spikes afterwards [5].

In contrast, safety violations such as conflicting blocks being confirmed result in irreversible dam-
age and essentially kill the blockchain. An example discussed in class was Ethereum Classic, where
a safety failure permanently damaged the trust in the chain [10].

So far, we have analyzed a safety attack where an adversarial leader proposes two blocks in the
same round. We showed that as long as f < 2¢ — n, the blocks won’t be confirmed. However, this
condition does not prevent a different class of safety attacks: when two blocks are confirmed but
in different rounds.

4 A Hidden (But Very Important) Attack Vector

Even though the protocol is supposed to be robust under the bounds we derived earlier, it still
remains vulnerable to a more subtle class of attacks that are core to the PBFT family. The threat
arises from strategic manipulation of vote timing across different rounds. In that case, the protocol
cannot maintain safety even below the 3 threshold due to this subtle yet incredibly catastrophic
safety attack.

4.1 Setup of the Attack

Let n = 3f + 1 and the protocol can tolerate up to f faulty nodes. The quorum size required for
confirmation is ¢ = 2f+1. According to the bound for f we found above, our setup should fulfill the
necessary and sufficient condition for safety since f = L%J . However, consider the following scenario:

In round 1, the adversary acts as the leader and proposes two blocks at the same height, an
action that violates the protocol rules. The honest votes between the blocks are split:

e Block 1 receives f + 1 honest votes.
e Block 2 receives f honest votes.

Because neither block reaches the quorum threshold ¢ = 2f + 1, neither is confirmed. The protocol
progresses to round 2, where a new (honest) leader proposes a third block. This new block receives
all n = 3f + 1 votes and is confirmed by time 4A. However, the adversary can now reveal their
previously withheld f votes for block 1. This introduces a significant safety failure, as clients, at
any future point, will be able to see those votes, irrespective of when they were originally cast.
We know that the release of the f votes by the adversary was delayed since the new honest leader
would have seen the quorum and wouldn’t have proposed the new block.

4.2 Why did the Quorum not Prevent the Double-voting?

In this attack, the quorum condition does not prevent the double-voting because the votes that
ended up confirming two blocks happened during different rounds. Therefore, the honest nodes,
unaware of the adversary’s hidden votes, voted again. In Figure 2, we claimed that the intersection
of the two circles only consists of adversarial nodes. We just saw though that through this attack,
the honest nodes were misguided to double-vote too! This is proof that the protocol is not secure.

4.3 Fix: A Second Round of Voting

The attack described above relies on the adversary withholding votes in round 1 and releasing them
after a block has already been confirmed in round 2. This creates ambiguity about which block
should be finalized. How could we protect the blockchain from adversaries having hidden votes
and releasing them in later rounds? A natural idea would be to reject any votes that arrive late,
treating them as invalid.

However, this is a disservice to honest late-joining clients. These clients are not continuously
online to monitor voting, meaning that they only observe a record of history. As a result, clients
have a difficulty in distinguishing between the two worlds:

e Adversarial votes arrived on time.
e Adversarial votes were withheld and released later to mislead honest participants.

To disambiguate the two worlds outlined above for late-arriving, honest clients, we need to record
additional information regarding the state of the quorum during the previous round. The key idea
is that blocks will not be confirmed based on a single round of votes. Instead, honest clients who
were present in the voting round should record what they observed and then vote again, but only
if they saw quorum the first time. To that end, the protocol introduces the following rules:

e Nodes vote a second time only if they saw a quorum of votes the first time.

e Confirmation uses only stage 2 votes.

Through this two-stage confirmation rule, honest nodes can attest to whether quorum was seen
at the time of voting. This gives late-joining clients a reliable signal and adversaries cannot fake
this after the fact.

References

[1] Aptos Labs. The aptos blockchain: Safe, scalable, and upgradeable web3 infrastructure.
https://aptosfoundation.org/whitepaper/aptos-whitepaper_en.pdf, 2022. Whitepa-
per.

[2] E. Buchman, J. Kwon, and Z. Milosevic. The latest gossip on BFT consensus. CoRR,
abs/1807.04938, 2018.

[3] M. Castro and B. Liskov. Practical byzantine fault tolerance. In Proceedings of the Third Sym-
posium on Operating Systems Design and Implementation (OSDI), pages 173-186. USENIX
Association, 1999.

[4] B. Y. Chan and E. Shi. Streamlet: Textbook streamlined blockchains. In Proceedings of the
2nd ACM Conference on Advances in Financial Technologies, pages 1-11, 2020.

[5] CryptoRank. Solana (sol) feeds on outage fud to rocket back above $100, 2024. Accessed:
2025-04-25.

[6] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the presence of partial synchrony.
Journal of the ACM (JACM), 35(2):288-323, 1988.

[7] J. Kwon. Tendermint: Byzantine fault tolerance in the age of blockchains. https:
//tendermint.com/static/docs/tendermint.pdf, 2014. Whitepaper.

[8] L. Lamport, R. Shostak, and M. Pease. The byzantine generals problem. ACM Transactions
on Programming Languages and Systems (TOPLAS), 4(3):382-401, 1982.

[9] M. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, and I. Abraham. Hotstuff: Bft consensus with
linearity and responsiveness. In Proceedings of the 2019 ACM Symposium on Principles of
Distributed Computing (PODC), pages 347-356. ACM, 2019.

[10] U. Zafar. Ethereum classic (etc) struggles to stay afloat while $8 downside target looms, 2025.
Accessed: 2025-04-25.

https://aptosfoundation.org/whitepaper/aptos-whitepaper_en.pdf
https://tendermint.com/static/docs/tendermint.pdf
https://tendermint.com/static/docs/tendermint.pdf

	A Brief Timeline of Consensus Protocols
	Tendermint's Impact

	Fundamentals: Proof-of-Stake Consensus
	PKI and Message Authentication
	Height-by-Height Consensus
	Basic Protocol (Ideal Setting)
	Why the Protocol Can't Stop at 2

	Adversarial Attacks and Protocol Robustness
	Assumptions on the Adversarial Model
	Bounding f for Liveness: Attack #1 (Honest Leader)
	Bounding f for Safety: Attack #2 (Adversarial Leader)

	A Hidden (But Very Important) Attack Vector
	Setup of the Attack
	Why did the Quorum not Prevent the Double-voting?
	Fix: A Second Round of Voting

