EE374 Blockchain Infrastructure Stanford, Spring 2025

Midterm

Due: Tues, May-13-2025, 4:30pm by submitting to Gradescope
(RE7ZNT).

IMPORTANT — Insert your name and email:

Instructions

1.

There are 7 questions in this exam, and the total number of points is 104. The total
number of pages is 17.

. For your convenience, a full description of the Tendermint protocol is included in p. 16

and 17 of the exam.

. Midterm is due at 4:30pm Tues and Nusret will go over the solutions in the discussion

section at that time.

The exam is open-book, but you may not get help or communicate with others on its
content.

Please sign below to confirm that you agree to Stanford’s Honor Code.

1. (30 points) True or False? 2 points for a correct answer. 0 point for an incorrect answer.
1 point for leaving blank.

2)

b)

)

Nakamoto invented the first consensus protocol.

Nakamoto invented the longest chain protocol.

The attack that Nakamoto worried most about is that an attacker with more than
50% of the hash power can create bitcoins from thin air.

The "no-forgery” property of a digital signature scheme guarantees that an ad-
versary who does not know the private key cannot present a valid signature on a
message if it has not seen a valid signature by the challenger on another message,
but provides no guarantee if the adversary has already seen one such signature by
the challenger.

The execution state maintained by Bitcoin is set of all UTXOs.

Alice has 2 bitcoins. In one transaction, she sends 1.5 bitcoins to Bob and 0.5
bitcoins back to herself. The size of the UTXO set increased by 2.

Costless long range attacks on Proof-of-stake blockchains are not possible in Proof-
of-work blockchains like Bitcoin.

Compared to the Tendermint protocol, the Ethereum Proof-of-Stake protocol has
two ledgers instead of one.

A hash function that satisfies the collision resistant property also satisfies the ran-
dom oracle property.

j) If a hash function H satisfies the collision resistant property, then the hash function
G defined by G(z) = H(H(x)) for all x in the domain of H also satisfies the collision
resistant property.

k) The largest fraction of blocks that an adversary can get into the longest chain in the
Bitcoin protocol is equal to the fraction of hash power the adversary has, assuming
the network delay is 0.

1) In order for a consensus protocol to be live, the chain quality should be greater
than or equal to 50%.

m) If there is a safety attack on Ethereum Proof-of-Stake protocol, it is guaranteed
that 1/3 of the total amount of ETH staked will be slashed.

n) Nakamoto’s goal of inventing Bitcoin is to replace ”trust me bro” security by ”trust
only math” security.

o) All Bitcoin transactions have at least one input and at least one output.

—e

—.

el e
eS|

= @
~— =

o

=
H T3 5" 3 3 9 9

—_ ~—

) F
m) F
n) F
o) F

2. (5 points) Two main consensus protocols discussed in the course are the Proof-of-Work
longest chain protocol and the Proof-of-Stake Tendermint protocol. Identify the key
differences in security properties and performance of these two consensus protocols.

Answer:

PoW Longest Chain PoS Tendermint

security resilience
accountable safety
long range attack security
latency
energy consumption
dynamic availability
finality (safety under asynchrony)

1/2 of hash power 1/3 of stake
no yes
yes no
slow (hours) fast (seconds)
high low
yes no
no yes

3. (14 points) In May 2021, China banned Bitcoin mining.

a)

(2 points) From publicly available data on the Internet, estimate the total Bitcoin
hash rate on May 12, 2021, exactly 4 years ago. This was before the ban.

Answer:

It is 173.8595 EH/s.

(2 points) From publicly available data on the Internet, estimate the total Bitcoin
hash rate on June 12, 2021, 1 month later. This was after the ban.

Answer:

It is 126.4049 EH/s.

(4 points) If the average Bitcoin block time was 10 minutes on May 12, 2021, what
would be the average Bitcoin block time on June 12, 2021, assuming that the Proof-
of-work difficulty threshold was not adjusted? What would the impact of this block
time have on the security and performance of the Bitcoin protocol?

Answer:

The average block time would be 10 x 173.8595/126.4049 ~ 13.75 minutes. This
would imply a larger latency and less throughput. It might conditionally imply
an improvement or degradation of security. It would imply an improvement of the
security resilience, as less hash power (and the same difficulty and network delay
A) would result in less forking. It might imply a degradation of security, if the drop
in hash power affected only the honest miners.

d) (6 points) To avoid the block time from drifting away from the target 10 minutes, the
Bitcoin protocol contains a difficulty adjustment mechanism: every epoch contains
2024 blocks, and the difficulty threshold is adjusted at the beginning of each epoch

as follows. Let
2023 - 10

= 3
7jlast - Tﬁrst

where Tt and Tig are the timestamps (in minutes) of the first block and the
last block of the previous epoch respectively. Then the difficulty threshold 7yew for
mining the blocks in the new epoch is adjusted from the difficulty threshold 7,q for
mining the blocks in the previous epoch by the formula:

G:

Grolq if % <G<4
Thew = 4To1d ifG>4
%Told if G < i

Assuming a new epoch starts on June 12 and the total hash rate remains constant
throughout this epoch, when will the next difficulty adjustment occurs, and what
will the average block time after that adjustment? Justify your answer carefully.
You can assume that the timestamps in the blocks are accurate.

Answer:

It will take on average 2023 x 10 x 173.8595/126.4049 ~ 19.3 days (or 27824.7
minutes) for 2024 blocks to be mined. Therefore, for these blocks,

2023 x 10

G=—""C
Tlast - Tﬁrst

~ 0.727.

Then, the new difficulty will be Thew = 0.727 X 749 (as 1/4 < 0.727 < 4), and the
new average block time after the adjustment will become 10 minutes per block.

4. (14 points) In class, when we discuss the safety and liveness of consensus protocols,
we assume that a client can download all the blocks that are made public by the hon-
est validators/miners. In practice, a late-joining client has to download the blocks by
querying other peers. For this problem, we will consider a scenario where a late-joining
client queries k neighboring peers. Honest peers are assumed to send their chains and
the corresponding certificates (if exist in the protocol), while dishonest peers can send
anything or nothing at all. The client computes its ledger from the data it receives from
all the peers. Assuming that the honest peers’ ledgers are safe and live, we would like to
explore the conditions under which the computed ledger of the late-joining client is safe
and live.

a) (6 points) First, consider Bitcoin’s longest chain protocol. State how a late-joining
client should compute its ledger based on the downloaded chains from its k peers.
What is the minimal trust assumption on the k peers to guarantee the safety of the
late-joining client’s ledger? What is the minimal trust assumption on the k peers
to guarantee the liveness of the late-joining client’s ledger?

Answer:

A late-joining client should select the longest chain of blocks with the correct headers
among the provided chains, remove the last k& blocks, and output the sequence of
transactions in the remaining chain as its ledger. At least one of the k peers must
be honest for the safety of the late-joining client’s ledger (otherwise, it can be fooled
into accepting a short chain conflicting with the longest chain observed by the other
clients). Similarly, at least one of the k peers must be honest for the liveness of the
late-joining client’s ledger.

b) (6 points) Repeat part (a) for the Tendermint protocol.

Answer:

The late-joining client should select the longest chain of blocks (among the provided
chains) such that there are 2f + 1 (or over 2/3) pre-commits by the validator set
for each block. It should then output the sequence of transactions in this chain as
its ledger. None of the k peers need to be honest for the safety of the late-joining
client’s ledger. However, at least one of the k£ peers must be honest for the liveness
of the late-joining client’s ledger.

(2 points) Compare (a) and (b), and provide an explanation for the difference(s) if
there area any.

Answer:

The main difference is in the condition for safety, and the reason for this difference
is that Bitcoin lacks cryptographic certificates to prove finality externally, whereas
Tendermint explicitly uses certificates created from pre-commit votes of validators
to establish finality. In the case of Bitcoin, at least one of the k peers must be
honest for the safety of the late-joining client’s ledger; otherwise, the client can
be fooled into accepting a short chain conflicting with the longest chain observed
by the other clients. In Tendermint, even if there is no honest node among the
peers, the adversarial nodes cannot convince the client to output a block that was
not confirmed, since no such block would have a valid certificate, i.e., 2f + 1 pre-
commits.

5. (11 points) In this question, we analyze Nakamoto’s private attack and the selfish mining
attack under network delay. The adversary has a fraction 8 < 1/2 of the mining power,
the honest and adversarial miners mine at rates A, and A\, blocks per second respectively,
and the network delay is assumed to be A (seconds). We assume that each single honest
miner contributes only an infinitesimally small fraction of the honest hash power (but
there are many honest miners in total).

In the first part of this question, we focus on the private attack.

2)

(3 points) Express (in terms of A, and A\,. When A = 0, under what conditions
does the private attack succeed (with non-negligible probability), or fail (except
with negligible probability)? Write down the upper bound on 3 for the attack to
fail.

Answer:

The adversary’s mining rate is A4, and the honest mining rate is Ap. 3 is the fraction
of the total mining rate that the adversary has. Hence;

Aa
Xa + A
The private attack succeeds with non-negligible probability, if A, > Ap. The private
attack fails except with negligible probability, if A, < Ap. The upper bound on S is

g <1/2.

8=

(4 points) Now, suppose A > 0, and the adversary ensures that every new block
mined by an honest miner reaches all the other honest miners exactly A time after
it is mined. Then, what would be the expected time for the honest chain to grow
by one level? Explain. (Here, the honest chain refers to the public chain mined by
the honest miners without adversarial participation.)

Hint: Recall that when A = 0, the expected time for the honest chain to grow by
one level was 1/\p,.

10

Answer:

In this case, when a new block B is mined at a new height h of the honest chain,
that block is observed by the other honest miners after A time. During this A
period, all other miners still try to extend the block at height A — 1. Since each
honest miner contributes only an infinitesimally small fraction of the total honest
hash power, during this A period, the miner that created B would not be able to
extend its own block and reach height h 4 1 either.

Now, once the A period elapses, all honest miners observe B and try to extend it.
They will then mine a new block at height h + 1 in expected 1/Aj time. Therefore,
the expected time for the honest chain to grow by one level becomes A + (1/\z).

c) (4 points) Given your answer above, when A > 0, under what condition, does
the private attack succeed (with non-negligible probability), or fail (except with
negligibile probability)? Write down the upper bound on g for the attack to fail in
terms of A. What happens to the upper bound as A — 0 and as A — oo0?

Answer:

By part (b), the growth rate of the honest chain becomes Ay, /(14+A,A). The private
attack succeeds with non-negligible probability, if A, > A,/(1 + ApA). The private
attack fails except with negligible probability, if A, < Ap/(1 + ApA). Hence, the

24AA—/44+(AA)?

upper bound becomes A . It approaches 1/2 as A — 0 and approaches
0 as A — oo.

11

6. (10 points) In class, we defined resilience of a consensus protocol as the maximum
number of nodes controlled by the adversary such that the protocol satisfies safety and
liveness (except with negligible probability). Recognizing that safety and liveness are
of different importance, we refine this definition. Let safety resilience of a consensus
protocol be the maximum number of nodes controlled by the adversary such that the
protocol satisfies safety (except with negligible probability). Similarly, let liveness re-
silience of a consensus protocol be the maximum number of nodes controlled by the
adversary such that the protocol satisfies liveness (except with negligible probability).

a)

(2 points) Let n = 3f + 1 denote the total number of nodes. Recall that we set the
quorum size for Tendermint to ¢ = 2f 4+ 1 in the class. In this case, what are the
safety and liveness resiliences?

Answer:

Both the safety and liveness resiliences are f.

(4 points) Given a quorum size of g € [0,3f + 1], what would the safety and liveness
resiliences be as a function of ¢? Plot how safety (y-axis) and liveness (x-axis)
resiliences vary against each other as ¢ varies.

Answer:

Safety resilience would be f; = 2¢ — n — 1, and the liveness resilience would be
fr =n —q. The plot is that of the y = n — 2z — 1.

(4 points) Given a quorum size of ¢ € [0,3f + 1], what would be the accountable
safety and liveness resiliences corresponding to ¢ (suppose Tendermint does have
accountable safety for this question)? Plot how accountable safety (y-axis) and
liveness (x-axis) resiliences vary against each other as ¢ varies.

12

Answer:

The accountable safety resilience would be fs = 2¢ — n, and the liveness resilience
would be f =n —q.

13

7. (20 points) In this question, we analyze the accountable safety of Tendermint with a
quorum size of ¢ = 2f 4+ 1. In the questions below, we do not make any assumptions
about the number of honest nodes, unless otherwise stated.

a) (8 points) Suppose two different blocks By and B from rounds 0 and 2 are con-
firmed by clients ¢g and co respectively. Block By was proposed via the mes-
sage (Proposal,r = 0,ur = —1, By), and block By was proposed via the message
(Proposal,r = 2,ur = 1, By). Then, can ¢y and ¢z come together and identify at
least f 4+ 1 nodes that violated the protocol rules? If so, write down the proof. If
not, argue why.

Hint: This question is very similar to question 1-c in homework 5; the only differ-
ence is that here, we consider the original confirmation rule of Tendermint.

Answer:

The answer is no. Note that ¢y must have observed 2f + 1 round-0 pre-commits for
By, and ¢y must have observed 2f + 1 round-2 pre-commits for By. A node that
sent round-2 pre-commits for By is either adversarial, or must have observed 2f + 1
round-2 pre-votes for Bs. Suppose the latter case is true. Then, since the 2f + 1
nodes that sent the round-0 pre-commits for By must have locked on By at round
0, by quorum intersection, at least f + 1 nodes (denoted by the set S3) must have

14

locked on By at round 0, yet sent a round-2 pre-vote for By # By. Now, either these
f+1 nodes are adversarial, or they must have observed 2 f + 1 round-1 pre-votes for
block By. Therefore, again by quorum intersection, at least f + 1 nodes (denoted
by the set S7) must have locked on By at round 0, yet sent a round-1 pre-vote for
By # By, which is a protocol violation. In all of the cases above, at least f + 1
nodes are adversarial. However, these adversarial nodes cannot be identified by cg
and co; since ¢y and co do not necessarily observe the round-1 or round-2 pre-votes
for By (they only observe the 2f + 1 round-0 and round-2 pre-commits for By and
By respectively).

(8 points) Now, suppose we know for a fact that in any given set of 2f + 1 nodes,
there will be at least one honest node. Then, in the question above, can ¢y and co
come together and identify at least f + 1 nodes that violated the protocol rules? If
so, write down the proof. If not, argue why.

Hint: If ¢y and ¢; ask an honest node what it knows about the pre-votes from the
current or the past rounds, the honest node will provide whatever information it
has to ¢g and ¢;.

Answer:

15

The answer is yes. Note that ¢y must have observed 2f + 1 round-0 pre-commits
for By, and ¢y must have observed 2f + 1 round-2 pre-commits for Bs. Out of the
2f 4+ 1 nodes that sent the round-2 pre-commits for B (call this set S2), at least
one is honest, and must have observed 2f + 1 round-2 pre-votes for By. Similarly,
out of the 2f 4+ 1 nodes that sent the round-2 pre-votes for By (call this set Sp2), at
least one is honest, and must have observed 2f 4+ 1 round-1 pre-votes for By. Then,
since the 2f + 1 nodes that sent the round-0 pre-commits for By must have locked
on By at round 0, by quorum intersection, at least f + 1 nodes (call this set Sj)
must have locked on By at round 0, yet sent a round-1 pre-vote for Bs # By, which
is a protocol violation.

Now, c¢; and co can ask the nodes in Sy to reveal the 2f 4+ 1 round-2 pre-votes for
Bs. The honest node within S.o will then reveal these round-2 pre-votes, i.e., the
set Sp2. Then, ¢ and cy can ask the nodes in Sy to reveal the 2f 4 1 round-1 pre-
votes for By. The honest node within Sy will then reveal these round-1 pre-votes.
Finally, by intersecting the 2f + 1 round-0 pre-commits and the 2f + 1 round-1
pre-votes, ¢ and c¢; can identify the nodes responsible for the safety violation.

c¢) (4 points) Now, suppose we know for a fact that x number of the nodes are honest.
What is the minimum value for z so that in any given set of 2f + 1 nodes, there
will be at least one honest node?

Answer:

The answer is f + 1. When there are f + 1 honest nodes, any set of 2f + 1 nodes
must contain at least one honest node (by quorum intersection).

16

Tendermint description (for a set of n = 3f+1 nodes, and quorum size of ¢ = 2f+1):

k%

Tendermint attempts to confirm a single block per height. Within each height h, it proceeds
in rounds, each with a unique, known leader that proposes a block. Each of these rounds
attempts to confirm a block for the height A. Round structure of Tendermint is described
below:

At each round r = 0,1,2,..., each honest node keeps track of the step of the protocol within
the round. It can be one of proposal, pre-vote, or pre-commit. Each step lasts A time, and
thus, each round lasts 3A time.

At the beginning of the proposal step (time ¢ = 3Ar), an honest leader proposes a round-r
block B by sending a proposal message (Proposal, r, vr, B). We will later see what vr refers to
— it can be —1 or a positive integer denoting some round.

Let (Proposal, r,vr, B) be the first round-r proposal message observed by an honest node. At
the beginning of the pre-vote step (time ¢ = 3Ar+ A), this honest node sends a round-r pre-
vote, denoted by (Prevote, r, vr, h(B)), for block B (vr is copied from the proposal message) if
the following conditions are satisfied:

e When vr = —1, the node can directly send the pre-vote.

e When vr > 0, the honest node will send the pre-vote only if it has also observed 2f + 1
round-vr pre-votes for B, i.e., 2f + 1 messages of the sort (Prevote, vr,vr’, h(B)) (here,
vr’ does not matter).

If an honest node does not observe a round-r block it can vote for, it sends a round-r pre-vote,
denoted as (Prevote, r,vr = —1, L), for a special nil (empty) value.

At the beginning of the pre-commit step (time ¢ = 3Ar + 2A), each honest node sends a
round-r pre-commit, denoted by (Precommit,r, h(B)), for the round-r block B, for which it
has first observed 2 f 4 1 round-r pre-votes of the form (Prevote, r, vr, h(B)) by distinct nodes.
If an honest node does not observe such 2f + 1 pre-votes for any round-r block, it sends a
round-r pre-commit, denoted as (Precommit,r, L), for a special nil value.

Confirmation Rule: At the end of the round (¢ = 3Ar 4+ 3A) or later, if an honest node
observes 2f + 1 round-r pre-commits for B, it confirms B for its height (h), and terminates
the protocol for height h. Otherwise, it goes into the next round r + 1.

A client ¢ confirms a round-r block B, if it observes (at any time) 2f + 1 round-r pre-commits
for B by distinct nodes. In that case, we say that the round-r block B became confirmed by
the round-r pre-commits.

Proposal Rule: Let v’ be the largest round such that the node has observed 2f + 1 round-r’
pre-votes for a round-r’ block B’. Then, if that node is elected as a leader in a future round
r”, it proposes this block B’ for round r” by sending the message (Proposal,r” vr =1/, B'). If
there is no such round 7/, i.e., if the node has not observed 2f + 1 (same-round) pre-votes for
any block B’, it can propose any block B” by sending the message (Proposal,r”, vr = —1, B”).

17

Locking Rule: An honest node v locks on a round-r block B at round r upon sending a
round-r pre-commit for B. In a future round r”, the node v does not send pre-votes for other
blocks B” # B unless the block B” comes as part of a proposal (Proposal, 7"’ vr = ', B")
and v observes 2f + 1 round vr = 1’ pre-votes for B”. Note that an honest node never
releases a lock permenantly: it can acquire a lock at a higher round in the future, or it might
temporarily drop the lock to vote for block B" # B in the example above.

kk >k

18

