EE376A /STATS376A Information Theory Lecture 3 - 01/13/2015

Lecture 3: Entropy, Relative Entropy, and Mutual Information

Lecturer: Tsachy Weissman Scribe: Alon Devorah, David Hallac, Kevin Shutzberg

In this lecture!, we will introduce certain key measures of information, that play crucial roles in theoretical
and operational characterizations throughout the course. These include the entropy, the mutual information,
and the relative entropy. We will also exhibit some key properties exhibited by these information measures.

1 Notation

A quick summary of the notation
1. Random Variables (objects): used more “loosely”, i.e. X, Y, U, V
2. Alphabets: X, ), U,V
3. Specific Values: x, y, u, v

For discrete random variable (object), U has p.m.f: PI(JH) £ P(U = u). Often, we'll just write p(u).
Similarly: p(z,y) for P)((xﬁ) and p(y|z) for PYD et

Y|X
2 Entropy
Definition 1. “Surprise Function”:
1
s(u) 2 log (1)
P

Definition 2. Entropy: Let U a discrete R.V. taking values in U. The entropy of U is defined by:
(2)

Note: The entropy H(U) is not a random variable. In fact it is not a function of the object U, but

rather a functional (or property) of the underlying distribution Pl(]“),u € U. An analogy is E[U], which is
also a number (the mean) corresponding to the distribution.

Jensen’s Inequality: Let ) denote a convex function, and X denote any random variable. Jensen’s
inequality states that

EQ(X)] = Q(E[X]). 3)

Further, if @) is strictly convex, equality holds iff X is deterministic.
Ezample: Q(x) = € is a convex function. Therefore, for a random variable X, we have by Jensen’s
inquality:

Conversely, if @ is a concave function, then

E[Q(X)] < Q(E[X]). (4)
Ezample: Q(z) = logx is a concave function. Therefore, for a random variable X > 0,

Eflog X] < log E[X] (5)

1 Reading: Chapter 2 of Cover and Thomas.



2.1 Properties of Entropy
W.L.O.G suppose U = {1,2,....m}

1. H(U) < logm, with equality iff P(u) = LVu (i.e. uniform).

—m

Proof:
H(U) = Ellog -] (©
(i
1
< log E[m] (Jensen’s inequality, since log is concave) (7)
1
=1 PU) ——= 8
&Y PO) 5, 0
= logm. 9)
Equality in Jensen, iff ﬁ is deterministic, iff p(u) = %

2. H(U) > 0, with equality iff U is deterministic.
Proof:
H(U) = Ellog L] > 0 since log L >0 (10)
U) U)

The equality occurs iff log ﬁ = 0 with probability 1, iff P(U) = 1 w.p. 1 iff U is deterministic.

3. For a PMF g, defined on the same alphabet as p, define

H,(0) & 3 p(w)log . (1)
ueU

Note that this is the expected surprise function, but instead of the surprise associated with p, it is the
surprise associated U, which is distributed according to PMF p, but incorrectly assumed to be having
the PMF of ¢q. The following result stipulates, that we will (on average) be more surprised if we had
the wrong distribution in mind. This makes intuitive sense! Mathematically,

H(U) < Hy(U), (12)
with equality iff ¢ = p.
Proof:
H(U) - H,(U) =E {log p(lu)} _E [log - (2)] (13)
HU)-H,(U)=E {logzgz)} (14)



By Jensen’s, we know that E [log (L)} <logE [%}

H(U) — H,(U) < logE [ZEZ” (15)
_1og zupw)% (16)

= 1og§: q(u) (17)

= log ;eu (18)

0 (19)

Therefore, we see that
HWU)-H,U)<o0.
Equality only holds when Jensen’s yields equality. That only happens when q( ; is deterministic, which

only occurs when g = p, i.e. the distributions are identical.

Definition 3. Relative Entropy. An important measure of distance between probability measures is
relative entropy, or the Kullback—Leibler divergence:

DGl = 3 plutog 23 — & frog 214 (20)

ueU

Note that property 3 is equivalent to saying that the relative entropy is always greater than or equal
to 0, with equality iff ¢ = p (convince yourself).

4. If X4, Xo,..., X, are independent random variables, then

H(X1,Xy,..., X,) =Y H(X;) (21)
Proof:
H(Xy, Xay..\ ) Xn) = E [1ogm] (22)
=E[-logp(x1,za,...,2,)] (23)
=E[-logp(z1)p(z2) ... p(zn)] (24)
= l Z logp(xi)l (25)
= Y El-logp(w) (20)
= Z H(X;). (27)

Therefore, the entropy of independent random variables is the sum of the individual entropies. This is
also intuitive, since the uncertainty (or surprise) associated with each random variable is independent.



Definition 4. Conditional Entropy of X given Y

H(X|Y) £ E[log %} (28)
1
B Z logP (x]y) (29)
1
- Z Py mey)ilogp(xly)] (30)
- ZP H(X|y). (31)

Note: The conditional entropy is a functional of the joint distribution of (X,Y"). Note that this is also
a number, and denotes the “average” surprise in X when we observe Y. Here, by definition, we also
average over the realizations of Y. Note that the conditional entropy is NOT a function of the random
variable Y. In this sense, it is very different from a familar object in probability, the conditional
expectation F[X|Y] which is a random variable (and a function of Y).

H(X|Y)<H(X),equaliff X 1 YV

Proof:
H(X) - H(X|Y) = E[log ﬁ] —E[log %] (32)
B [log ”(('Y))ig;} E[log m] (33)
- ; P(,y)log P](Dg’y(;) (34)
= D(Poy 1P, % P,) (35)
>0  equaliff X LY. (36)

The last step follows from the non-negativity of relative entropy. Equality holds iff P, , = P, X Py, i.e
X and Y are independent.

Definition 5. Joint Entropy of X and Y

H(X,Y) £ E[log %] (37)
o8 rPTrTe) 39
. Chain rule for entropy:
H(X,Y) = H(X) + H(Y|X) (39)
— H(Y) + H(X|Y) (40)
. Sub-additivity of entropy
H(X,Y) < HX) + HY), (41)

with equality iff X 1 Y (follows from the property that conditioning does not increase entropy)



Definition 6. Mutual information between X and Y

We now define the mutual information between random variables X and Y distributed according to
the joint PMF P(z,y):

I(X,)Y)2 H(X)+H(Y) - H(X,Y) (42)
= H(Y) - H(Y|X) (43)
= H(X) - H(X]Y) (44)
= D(Pyy|| P x Py) (45)

The mutual information is a canonical measure of the information conveyed by one random variable
about another. The definition tells us that it is the reduction in average surprise, upon observing a
correlated random variable. The mutual information is again a functional of the joint distribution of
the pair (X,Y"). It can also be viewed as the relative entropy between the joint distribution, and the
product of the marginals.



