
EE376A: Final

Instructions:

• You have three hours, 12:15PM - 3:15PM

• The exam has 3 questions, total 112 points. Please start answering each question on a
new page of the answer booklet.

• You are allowed to carry the course reader and other course related material with you.
Use of internet or mobile phones is not allowed.

• You are required to provide a detailed explanation of how you arrived at the correct
answer.

• As throughout the course, entropy (H) and Mutual Information (I) are specified in
bits, and logarithms are taken to base 2.

• Throughout the exam, you may use results from previous parts of a question even if
you did not complete those parts.

• Good Luck !

1. Channel Capacity in Presence of State Information (32 points)
Consider a binary memoryless channel with state whose input-output relation is described
as follows. The received channel output Y is given by

Y = X ⊕ S ⊕ Z,

where X is the channel input, S is the channel state, and Z is the channel noise. X, S, Z
and Y all take their values in {0, 1}, and ⊕ denotes modulo-2 addition. S ∼ Bernoulli(q)
and Z ∼ Bernoulli(p) are independent, and jointly independent of the channel input X.
Thus, when we employ n-block encoding and decoding, we have for each 1 ≤ i ≤ n

Yi = Xi ⊕ Si ⊕ Zi,

where Sn are i.i.d. Bernoulli(q) and Zn are i.i.d. Bernoulli(p), where Sn and Zn are
independent, and jointly independent of the channel input sequence Xn.

Find the capacity of the channel in the following cases:

(a) (8 points) Neither the transmitter nor the receiver knows the state sequence.

(b) (8 points) The state sequence is known only to the receiver, i.e., the n-block decoder
gets to base its decision on Y n and Sn.

(c) (8 points) The state sequence is known to both the transmitter and the receiver, i.e.,
the n-block encoder and decoder know Sn prior to communication.
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(d) (8 points) The state sequence is known to both the transmitter and the receiver, as
in the previous part but, in addition, the encoding must adhere to the cost constraint
E[ 1

n

∑n
i=1 Xi] ≤ 0.25.

2. Rate Distortion under Log Loss (40 points)

Let X be distributed i.i.d. according to distribution P ∈ P(X ), where P(X ) denotes
the set of all probability mass functions on the finite alphabet X . Distortion functions
usually ask for “hard” reconstructions. For example, the reconstruction alphabet is the
same as the source alphabet, Y = X , and the distortion is Hamming d(x, y) = 1(x 6= y).

Suppose we are instead interested in a “soft” reconstruction: instead of a finite recon-
struction alphabet we let Y = P(X ), i.e., the reconstruction is a PMF on X . Thus, a
reconstruction q ∈ P(X ) may be construed as a distribution of belief q(x) by the decoder
over the values x ∈ X that the source symbol might take. A natural distortion function
for such soft reconstructions is the ‘log-loss’:

d`(x, q) = − log q(x).

(a) (8 points) Show that

E[d`(X, q)] ≥ H(X),

for all q ∈ P(X ). When is equality achieved?

(b) (8 points) Suppose X and U are jointly distributed and denote the conditional PMF
of X given U by PX|U . Show that

E
[
d`
(
X,PX|U(·|U)

)]
= H(X|U),

where PX|U(·|u) denotes the conditional PMF of X given U = u and, therefore,
PX|U(·|U) is a P(X )-valued random variable.

(c) (8 points) Consider the random PMF Q — that is, it is a random variable on
P(X ). Let Q be jointly distributed with X according to PX,Q. Furthermore, let
Q̃ = PX|Q(·|Q) where Q̃ is again a random variable on P(X ). Show that

E [d`(X,Q)] ≥ E
[
d`(X, Q̃)

]
= H(X|Q).

Also, argue why
I(X; Q̃) ≤ I(X;Q).

(d) (8 points) Find and plot the rate distortion function under log-loss. I.e., find

R(D) = min
E[d`(X,Q)]≤D

I(X;Q).

Hint: use the previous part to show that the constraint set for the minimization can
be taken to be H(X|Q) ≤ D instead of E[d`(X,Q)] ≤ D.
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(e) (8 points) For a given distortion level D, describe a concrete implementable scheme
(not based on a random coding argument) for achieving R(D).

3. The MMI decoder (40 points)
Valery has discovered an amazing new channel decoder. He claims it needs to know
nothing about the channel! Imre and Janos are suspicious and need your help checking
the validity of his claim.

The (standard random coding) assumptions:

• 2nR codewords are drawn i.i.d. according to distribution PX .

• Message J is chosen uniformly from the set {1, 2, . . . , 2nR}, and the corresponding
codeword Xn(J) is sent through the channel.

• The channel is discrete memoryless, characterized by the conditional PMF PY |X ,
where both X and Y take values in the respective finite alphabets X and Y .

Now suppose sequence Y n ∈ Yn is received by the decoder. Let PXn(j),Y n denote the joint
empirical distribution of the jth codeword Xn(j) and Y n. Valery’s decoder produces as
its estimate the codeword with maximum empirical mutual information with Y n:

Ĵ = arg max
j∈{1,2,...,2nR}

I(PXn(j),Y n)

where, for QX,Y ∈ P(X ,Y), I(QX,Y ) denotes the mutual information between X and Y
when distributed according to QX,Y (and ties in the maximization are broken arbitrarily).

(a) (8 points) Does Valery’s decoder have to know the channel statistics PY |X in order
to implement this decoding scheme?

(b) (8 points) Prove that, for any QX,Y ∈ P(X ,Y),

D (QX,Y ‖PX × PY ) ≥ I(QX,Y ).

Hint: Use the fact that I(QX,Y ) = D (QX,Y ||QX ×QY ).

(c) (8 points) Using the previous part, prove that f(θ) ≥ θ, where

f(θ)
∆
= min

QX,Y ∈P(X ,Y):I(QX,Y )≥θ
D (QX,Y ‖PX × PY ) .

(d) (8 points) Using the method of types show that for any 2 ≤ j ≤ 2nR

P
(
I(PXn(j),Y n) ≥ θ

∣∣ J = 1
) ·

= 2−nf(θ)
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(e) (8 points) What is the supremum of rates R for which

P
(
Ĵ 6= J

)
−→ 0 as n→∞

under Valery’s scheme? How does it compare to the supremum of rates for which
joint typicality decoding would have achieved reliable communication?

Hint: First justify why for any θ

P
(
Ĵ 6= J

)
= P

(
Ĵ 6= J |J = 1

)
≤ P

(
I(PXn(1),Y n) < θ

∣∣ J = 1
)

+ P
(
I(PXn(j),Y n) ≥ θ for some 2 ≤ j ≤ 2nR

∣∣ J = 1
)

≤ P
(
I(PXn(1),Y n) < θ

∣∣ J = 1
)

+ 2nR × P
(
I(PXn(2),Y n) ≥ θ

∣∣ J = 1
)
.

Then, with the help of previous parts, establish for which values of R and θ the
expression in the last line vanishes.
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