
EE376A - Information Theory
Final, Monday March 16th

Instructions:

• You have three hours, 3.30PM - 6.30PM

• The exam has 4 questions, totaling 120 points.

• Please start answering each question on a new page of the answer booklet.

• You are allowed to carry the textbook, your own notes and other course related ma-
terial with you. Electronic reading devices [including kindles, laptops, ipads, etc.] are
allowed, provided they are used solely for reading pdf files already stored on them and
not for any other form of communication or information retrieval.

• You are required to provide detailed explanations of how you arrived at your answers.

• You can use previous parts of a problem even if you did not solve them.

• As throughout the course, entropy (H) and Mutual Information (I) are specified in
bits.

• log is taken in base 2.

• Throughout the exam ‘prefix code’ refers to a variable length code satisfying the prefix
condition.

• Good Luck!
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1. Three Shannon Codes (25 points)
Let {Ui}i≥1 be a stationary finite-alphabet source whose alphabet size is r. Note that
the stationarity property implies that P (ui), P (ui|ui−1) do not depend on i. Throughout
this problem, assume that − logP (ui) and − logP (ui|ui−1) are integers for all (ui, ui−1).
Recall the definition of a Shannon Code given in the lecture. Your TA’s decided to
compress this source in a lossless fashion using Shannon coding. However, each of them
had a different idea:

• Idoia suggested to code symbol-by-symbol, i.e., concatenate Shannon codes on the
respective source symbols U1, U2, . . ..

• Kartik suggested to code in pairs. In other words, first code (U1, U2) with a Shannon
code designed for the pair, then code (U3, U4), and so on.

• Jiantao suggested to code each symbol given the previous symbol by using the
Shannon code for the conditional pmf {P (ui|ui−1)}. In other words, first code U1,
then code U2 given U1, then code U3 given U2, and so on.

In this problem, you will investigate which amongst the three schemes is best for a general
stationary source.

(a) (10 points) If the source is memoryless (i.e. i.i.d.), compare the expected codeword
length per symbol, i.e., 1

n
E[l(Un)], of each scheme, assuming n > 2 is even.

(b) (15 points) Compare the schemes again, for the case where the source is no longer
memoryless and, in particular, is such that Ui−1 and Ui are not independent.
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2. Channel coding with side information (35 points)

Consider the binary channel given by

Yi = Xi ⊕ Zi, (1)

where Xi, Yi, Zi all take values in {0, 1}, and ⊕ denotes addition modulo-2. There are
channel states Si which determine the noise level of Zi as follows.

• Si is binary valued, taking values in the set {G,B}, distributed as

Si =

{
G, with probability 2

3

B, with probability 1
3

• The conditional distribution of Zi given Si is characterized by

P (Zi = 1|Si = s) =

{
1
4
, if s = G

1
3
, if s = B

In other words, Zi|{Si = s} ∼ Bernoulli(ps), where

ps =

{
1
4
, if s = G

1
3
, if s = B

{(Si, Zi)} are i.i.d. (in pairs), independent of the channel input sequence {Xi}.

(a) (10 points) What is the capacity of this channel when both the encoder and the
decoder have access to the state sequence {Si}i≥1?

(b) (10 points) What is the capacity of this channel when neither the encoder nor the
decoder have access to the state sequence {Si}i≥1?

(c) (10 points) What is the capacity of this channel when only the decoder knows the
state sequence {Si}i≥1?

(d) (5 points) Which is largest and which is smallest among your answers to parts (a),
(b) and (c)? Explain.
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3. Modulo-3 additive noise channel (25 points)

(a) (5 points) Consider the modulo-3 additive white noise channel given by

Yi = Xi ⊕ Zi, (2)

where Xi, Zi, Yi all take values in the alphabet {0, 1, 2}, ⊕ denotes addition modulo-3,
and {Zi} are i.i.d. ∼ Z and independent of the channel input sequence {Xi}.

Xi

Zi

Yi

Figure 1: Ternary additive channel.

Show that the capacity of this channel is given by

C = log 3−H(Z). (3)

(b) (7 points) For ε ≥ 0 define

φ(ε) = max
Z:Pr(Z 6=0)≤ε

H(Z), (4)

where the maximization is over ternary random variables Z that take values in
{0, 1, 2} (and that satisfy the indicated constraint). Obtain φ(ε) explicity, as well
as the distribution of the random variable, Zε, that achieves the associated maximum.

[Distinguish between the ranges 0 ≤ ε < 2/3 and ε ≥ 2/3.]

(c) (5 points) Consider the problem of rate distortion coding of a memoryless source
Ui ∼ U , where the source and the reconstruction alphabets are both equal and
ternary, i.e., U = V = {0, 1, 2}. Let the distortion measure be Hamming loss

d(u, v) =

{
0, if u = v

1, otherwise.

For U, V that are jointly distributed such that E[d(U, V )] ≤ D, justify the following
chain of equalities and inequalities

I(U ;V )
(i)
= H(U)−H(U |V )
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(ii)
= H(U)−H(U 	 V |V )

(iii)

≥ H(U)−H(U 	 V )

(iv)

≥ H(U)− φ(D),

where 	 denotes subtraction modulo-3 and φ(D) was defined in Equation (4). Argue
why this implies that the rate distortion function of the source U is lower bounded
as

R(D) ≥ H(U)− φ(D). (5)

The above inequality is known as the ‘Shannon lower bound’ (specialized to our
setting of ternary alphabets and Hamming loss).

(d) (8 points) Show that when U is uniform (on {0, 1, 2}), the Shannon lower bound
holds with equality, i.e.,

R(D) = H(U)− φ(D) = log 3− φ(D), 0 ≤ D ≤ 1. (6)

[Hint: establish, by construction, existence of a joint distribution on U, V such that
U is uniform and the inequalities in Part (c) hold with equalities]
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4. Gaussian source and channel (35 points)

• Gaussian Channel

Consider the parallel Gaussian channel which has two inputs X = (X1, X2) and two
outputs Y = (Y1, Y2), where

Y1 = X1 + Z1

Y2 = X2 + Z2,

and Zi ∼ N (0, σ2
i ), i = 1, 2, are independent Gaussian random variables. We impose

an average power constraint on the input X, which is

E[‖X‖2] = E[X2
1 +X2

2 ] ≤ P

(a) (10 points) Give an explicit formula for the capacity of this channel in terms of
P, σ2

1, σ
2
2.

(b) (7 points) Suppose you had access to capacity-achieving schemes for the scalar
AWGN channel whose capacity we derived in class. How would you use them
to construct capacity-achieving schemes for this parallel Gaussian channel?

• Gaussian Source

Consider a two-dimensional real valued source U = (U1, U2) such that U1 ∼ N (0, σ2
1),

and U2 ∼ N (0, σ2
2), and U1 is independent of U2. Let d : R2 × R2 → R be the

distortion measure

d(u, v) = ‖u− v‖2 = |u1 − v1|2 + |u2 − v2|2

We wish to compress i.i.d. copies of the source U , with average per-symbol distortion
no greater than D, i.e. the usual lossy compression setup discussed in class.

(a) (10 points) Evaluate the rate-distortion function R(D) explicitly in terms of the
problem parameters D, σ2

1, σ
2
2.

(b) (8 points) Suppose you had access to good lossy compressors for the scalar
Gaussian source whose rate-distortion function we derived in class. How would
you use them to construct good schemes for this two-dimenstional Gaussian
source?
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