EE376A: Midterm

Instructions:

- You have two hours, 7PM - 9PM
- The exam has 3 questions, totaling 100 points.
- Please start answering each question on a new page of the answer booklet.
- You are allowed to carry textbook, your own notes and other course related material with you. Electronic reading devices [including kindles, laptops, ipads, etc.] are allowed, provided they are used solely for reading pdf files already stored on them and not for any other form of communication or information retrieval..
- You are required to provide a detailed explanation of how you arrived at your answers.
- You can use previous parts of a problem even if you did not solve them.
- As throughout the course, entropy (H) and Mutual Information (I) are specified in bits.
- Throughout the exam 'prefix code' refers to a variable length code satisfying the prefix condition.
- Good Luck !

1. Vin's Idea (30 points)

Vinith is very excited about a new lossless compression idea, and he claims it can beat entropy. Albert is very skeptical, as Vinith got a pretty low grade when he took EE376A. Albert, however, didn't do too well in EE376A either, so now he needs your help to analyze Vinith's scheme.

Vinith: "Suppose X_{1}, X_{2}, \ldots is an i.i.d. Bernoulli- $1 / 2$ sequence. We can break up this sequence into its pattern of 'repeats'. For instance, $0001100001 \ldots$ begins with repeats (also known as 'run-lengths') ' 000 ', ' 11 ', and ' 0000 '. If we let L_{i} be the length of the i th repeat, we can represent the sequence by $\left(X_{1}, L_{1}, L_{2}, \ldots\right)$. For example,

- $1010 \ldots$ would be represented by $(1,1,1,1, \ldots)$
- $11100111110 \ldots$ by $(1,3,2,5, \ldots)$ and
- $001011111110 \ldots$ by $(0,2,1,1,7, \ldots)$.

In particular, I suggest we describe the sequence $X_{1}, X_{2}, \ldots, X_{\sum_{i=1}^{10} L_{i}}$ by describing ($X_{1}, L_{1}, L_{2}, \ldots, L_{10}$), which I'm sure would be a heavily compressed representation!!"
(a) (5 points) What is the entropy of the first repeat length $H\left(L_{1}\right)$?
(b) (5 points) Describe an optimal prefix code for L_{1}. What is its expected code-length?
(c) (5 points) What is $H\left(X_{1}, L_{1}, \ldots, L_{10}\right)$?
(d) (5 points) Describe an optimal uniquely decodable code for $\left(X_{1}, L_{1}, \ldots, L_{10}\right)$. What is its expected code-length? Call it "Vinith's code".
(e) (5 points) What is the expected number of source symbols $E\left[\sum_{i=1}^{10} L_{i}\right]$ that Vinith's code encodes?
(f) (5 points) Comment, based on your answers to the previous two parts, on whether Vinith's code is "beating entropy" on average.
2. Non-i.i.d. Source (30 points)

Consider a second-order binary Markov process $\left\{X_{i}\right\}_{i \geq 1}$ characterized as follows:

- $P\left(X_{1}=0, X_{2}=0\right)=P\left(X_{1}=1, X_{2}=1\right)=\frac{1}{6}$ and $P\left(X_{1}=0, X_{2}=1\right)=P\left(X_{1}=1, X_{2}=0\right)=\frac{1}{3}$.
- For $n \geq 3$,
- If $X_{n-1}=X_{n-2}$, then $X_{n}=1-X_{n-1}$.
- If $X_{n-1} \neq X_{n-2}$, then X_{n} is drawn as a fair coin flip, independent of $\left\{X_{i}\right\}_{i=1}^{n-1}$.
(a) (6 points) Find an optimal prefix code for the pair (X_{1}, X_{2}), along with its expected code-length.
(b) (6 points) Show that the distribution of $\left(X_{n}, X_{n+1}\right)$ is the same for all $n \geq 1$ (and, hence, the process is stationary).
(c) (6 points) Find the "entropy rate" of the process

$$
\lim _{n \rightarrow \infty} \frac{H\left(X_{1}, X_{2}, \ldots, X_{n}\right)}{n}
$$

[Hint: can justify and use the facts that $H\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\sum_{i=1}^{n} H\left(X_{i} \mid X^{i-1}\right)$, and $H\left(X_{i} \mid X^{i-1}\right)=H\left(X_{i} \mid X_{i-1}, X_{i-2}\right)=H\left(X_{3} \mid X_{2}, X_{1}\right)$ for $\left.i \geq 3\right]$
(d) (6 points) For fixed $n \geq 2$, does there exist a uniquely decodable code for ($X_{1}, X_{2}, \ldots, X_{n}$) whose expected code-length is $H\left(X_{1}, X_{2}, \ldots, X_{n}\right)$? If so, describe one. If not, explain why.
(e) (6 points) Describe a uniquely decodable code for $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ that attains the entropy rate. That is, a code with length function ℓ_{n} such that

$$
\lim _{n \rightarrow \infty} \frac{E\left[\ell_{n}\left(X_{1}, X_{2}, \ldots, X_{n}\right)\right]}{n}
$$

is equal to the entropy rate from part (c).
3. Entropy of a Sum and a Difference of I.I.D. Random Variables (40 points) We will prove that if $\left(Y, Y^{\prime}\right)$ are i.i.d. discrete random variables then:

$$
H\left(Y-Y^{\prime}\right)-H(Y) \leq 2\left(H\left(Y^{\prime}+Y\right)-H(Y)\right)
$$

We will prove this inequality in the following steps.
(a) Data Processing Inequality for Mutual Information (10 points)

Let X_{1}, X_{2} be discrete random variables. Also, let $Y_{1}=F\left(X_{1}\right)$ and $Y_{2}=G\left(X_{2}\right)$ for some functions, $F(\cdot), G(\cdot)$. Prove that:

$$
I\left(X_{1} ; X_{2}\right) \geq I\left(Y_{1} ; Y_{2}\right)
$$

(b) Submodularity (10 points)

Suppose that there exist functions F, G and R such that $X_{0}=F\left(X_{1}\right)=G\left(X_{2}\right)$ and $X_{12}=R\left(X_{1}, X_{2}\right)$, where X_{1}, X_{2} are discrete random variables. Use the previous part to prove that

$$
H\left(X_{12}\right)+H\left(X_{0}\right) \leq H\left(X_{1}\right)+H\left(X_{2}\right) .
$$

(c) Ruzsa Triangle Inequality (10 points)

Let X, Y, Z be independent discrete random variables. Use Part (b) to prove that:
i. $H(X-Z) \leq H(X-Y)+H(Y-Z)-H(Y)$
ii. $H(X-Z) \leq H(X+Y)+H(Y+Z)-H(Y)$
[Hint: Use Part(b) with $X_{1}=(X-Y, Y-Z), X_{2}=(X, Z), X_{12}=(X, Y, Z)$ and $\left.X_{0}=X-Z.\right]$
(d) Sum and Difference of Entropy (10 points)

Use the previous part to conclude that for i.i.d $\left(Y, Y^{\prime}\right)$ random variables

$$
H\left(Y-Y^{\prime}\right)-H(Y) \leq 2\left(H\left(Y^{\prime}+Y\right)-H(Y)\right)
$$

