
EE376A: Midterm Solutions

1. Vin’s Idea (30 points)
Vinith is very excited about a new lossless compression idea, and he claims it can beat
entropy. Albert is very skeptical, as Vinith got a pretty low grade when he took EE376A.
Albert, however, didn’t do too well in EE376A either, so now he needs your help to ana-
lyze Vinith’s scheme.

Vinith: “Suppose X1, X2, . . . is an i.i.d. Bernoulli-1/2 sequence. We can break up this
sequence into its pattern of ‘repeats’. For instance, 0001100001... begins with repeats
(also known as ‘run-lengths’) ‘000’, ‘11’, and ‘0000’. If we let Li be the length of the ith
repeat, we can represent the sequence by (X1, L1, L2, . . .). For example,

• 1010 . . . would be represented by (1, 1, 1, 1, . . .)

• 11100111110 . . . by (1, 3, 2, 5, . . .) and

• 001011111110 . . . by (0, 2, 1, 1, 7, . . .).

In particular, I suggest we describe the sequence X1, X2, . . . , X∑10
i=1 Li

by describing

(X1, L1, L2, . . . , L10), which I’m sure would be a heavily compressed representation!!”

(a) (5 points) What is the entropy of the first repeat length H(L1)?

(b) (5 points) Describe an optimal prefix code for L1. What is its expected code-length?

(c) (5 points) What is H(X1, L1, . . . , L10)?

(d) (5 points) Describe an optimal uniquely decodable code for (X1, L1, . . . , L10). What
is its expected code-length? Call it “Vinith’s code”.

(e) (5 points) What is the expected number of source symbols E[
∑10

i=1 Li] that Vinith’s
code encodes?

(f) (5 points) Comment, based on your answers to the previous two parts, on whether
Vinith’s code is “beating entropy” on average.

Solution:

(a) At each time i, the current repeat will end with probability 1/2. Therefore, each
repeat length Li is a geometric random variable with parameter 1/2. Therefore,

H(L1) =
∞∑
j=1

2−j log(2j) =
∞∑
j=1

j2−j = 2.

(b) An optimum prefix code for L1 is
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L1 Codeword
1 1
2 01
3 001
...

...

where its expected code-length is

∞∑
i=1

1

2i
i = 2.

(c) Since the process is memoryless, the repeat lengths Li are independent and identi-
cally distributed. Therefore H(L1, . . . , L10) = 10H(L1) = 20. The first symbol X1

is independent of the repeat lengths (L1, . . . , L10), so the joint entropy is given by

H(X1, L1, . . . , L10) = H(X1) + 10H(L1) = 21.

(d) We have to use one bit to describe X1. Since L1, L2, . . . , L10 are i.i.d. geometric
random variables with parameter 1/2, we can use the prefix code for L1 (which we
did in (b)) repeatedly. Since the expected code-length of an optimal prefix code for
L1 is 2, the expected code-length will be

1 + 2× 10 = 21.

(e) The expected value of Li is that of a geometric random variable with parameter 1/2:
E[Li] = 2. Using the linearity of expectation,

E[
10∑
i=1

Li] =
10∑
i=1

E[Li] = 20.

(f) Vinith is encoding 20 souce bits using an average of 21-bit-long binary codewords.
Thus, on average he is expending more than one bit of description per source bit,
and not ‘beating the entropy’. .

2. Non-i.i.d. Source (30 points)
Consider a second-order binary Markov process {Xi}i≥1 characterized as follows:

• P (X1 = 0, X2 = 0) = P (X1 = 1, X2 = 1) = 1
6

and
P (X1 = 0, X2 = 1) = P (X1 = 1, X2 = 0) = 1

3
.

• For n ≥ 3,

– If Xn−1 = Xn−2, then Xn = 1−Xn−1.

– If Xn−1 6= Xn−2, then Xn is drawn as a fair coin flip, independent of {Xi}n−1i=1 .

(a) (6 points) Find an optimal prefix code for the pair (X1, X2), along with its expected
code-length.
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(b) (6 points) Show that the distribution of (Xn, Xn+1) is the same for all n ≥ 1 (and,
hence, the process is stationary).

(c) (6 points) Find the “entropy rate” of the process

lim
n→∞

H(X1, X2, . . . , Xn)

n
.

[Hint: can justify and use the facts that H(X1, X2, . . . , Xn) =
∑n

i=1 H(Xi|X i−1), and
H(Xi|X i−1) = H(Xi|Xi−1, Xi−2) = H(X3|X2, X1) for i ≥ 3 ]

(d) (6 points) For fixed n ≥ 2, does there exist a uniquely decodable code for (X1, X2, . . . , Xn)
whose expected code-length is H(X1, X2, . . . , Xn)? If so, describe one. If not, explain
why.

(e) (6 points) Describe a uniquely decodable code for (X1, X2, . . . , Xn) that attains the
entropy rate. That is, a code with length function `n such that

lim
n→∞

E [`n(X1, X2, . . . , Xn)]

n

is equal to the entropy rate from part (c).

Solution:

(a) The Huffman tree for (X1, X2) is

Codeword (X1, X2)
0 (0, 1) 1

3
1
3

1
3

1
10 (1, 0) 1

3
1
3

2
3

110 (0, 0) 1
6

1
3

111 (1, 1) 1
6

Its expected code-length is

1× 1

3
+ 2× 1

3
+ 3× 1

6
+ 3× 1

6
= 2.

(b) We will show that (Xn, Xn+1) has the same distribution with (X1, X2) using induction.
Clearly, the statement is true for n = 1. Suppose (Xk−1, Xk) has the same distribution
with (X1, X2). Then,

P (Xk = 0, Xk+1 = 0) =P (Xk−1 = 0, Xk = 0, Xk+1 = 0) + P (Xk−1 = 1, Xk = 0, Xk+1 = 0)

=P (Xk+1 = 0|Xk−1 = 1, Xk = 0)P (Xk−1 = 1, Xk = 0)

=
1

2
· 1

3

=
1

6
P (Xk = 0, Xk+1 = 1) =P (Xk−1 = 0, Xk = 0, Xk+1 = 1) + P (Xk−1 = 1, Xk = 0, Xk+1 = 1)
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=P (Xk+1 = 1|Xk−1 = 0, Xk = 0)P (Xk−1 = 0, Xk = 0)

+ P (Xk+1 = 1|Xk−1 = 1, Xk = 0)P (Xk−1 = 1, Xk = 0)

=1 · 1

6
+

1

2
· 1

3

=
1

3

Similarly, it is easy to show that P (Xk = 1, Xk+1 = 0) = 1
3

and P (Xk = 1, Xk+1 =
1) = 1

6
.

(c) For n ≥ 3, H(X1, X2, . . . , Xn) = (n− 2)H(X3|X2, X1) + H(X1, X2). Therefore,

lim
n→∞

H(X1, X2, . . . , Xn)

n
= H(X3|X2, X1).

Note that the conditional entropy H(X3|X2, X1) is

H(X3|X2, X1) =
1

6
·H(X3|X2 = 0, X1 = 0) +

1

6
·H(X3|X2 = 1, X1 = 1)

+
1

3
·H(X3|X2 = 1, X1 = 0) +

1

3
·H(X3|X2 = 0, X1 = 1)

=
1

6
· 0 +

1

6
· 0 +

1

3
· 1 +

1

3
· 1

=
2

3
.

(d) For n ≥ 2,

P (x1, x2, . . . , xn) = P (x1, x2)
n∏

i=3

P (xi|xi−1, xi−2)

where P (x1, x2) is either 1
3

or 1
6
, and P (xi|xi−1, xi−2) takes value from {1, 0, 1

2
}. There-

fore, it is not a diadic distribution, we can not achieve H(X1, X2, . . . , Xn).

(e) Consider the following coding scheme.

• Use any code for X1, X2 (e.g. Huffman). This will be negligible in terms of
average code-length.

• For n ≥ 3, if Xn−1 6= Xn−2 describe Xn using 1 bit. If Xn−1 = Xn−2, then send
nothing since Xn will be deterministic.

Since P (Xn−1 = Xn−2) = 2
3
, the average code-length per symbol will be 2

3
.

Note: we can use Vin’s code to achieve the entropy rate. Let Li be a length
of i-th repeat. Then, Zi = Li − 1 is i.i.d. Bernoulli-1/2 random process and
(X1, Z1, Z2, . . .) will be a compressed version of (X1, X2, . . .). For given compressed
version (X1, Z1, Z2, . . . , Zm), the expected number of encoded source symbols is

E[L1 + L2 + · · ·+ Lm] =
3

2
m.

Therefore, we can argue that

lim
n→∞

E[ln(X1, X2, . . . , Xn)]

n
=

2

3
.
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3. Entropy of a Sum and a Difference of I.I.D. Random Variables (40 points)
We will prove that if (Y, Y ′) are i.i.d. discrete random variables then:

H(Y − Y ′)−H(Y ) ≤ 2(H(Y ′ + Y )−H(Y )).

We will prove this inequality in the following steps.

(a) Data Processing Inequality for Mutual Information (10 points)
Let X1, X2 be discrete random variables. Also, let Y1 = F (X1) and Y2 = G(X2) for
some functions, F (·), G(·). Prove that:

I(X1;X2) ≥ I(Y1;Y2).

(b) Submodularity (10 points)

Suppose that there exist functions F , G and R such that X0 = F (X1) = G(X2) and
X12 = R(X1, X2), where X1, X2 are discrete random variables. Use the previous
part to prove that

H(X12) + H(X0) ≤ H(X1) + H(X2).

(c) Ruzsa Triangle Inequality (10 points)
Let X, Y, Z be independent discrete random variables. Use Part (b) to prove that:

i. H(X − Z) ≤ H(X − Y ) + H(Y − Z)−H(Y )

ii. H(X − Z) ≤ H(X + Y ) + H(Y + Z)−H(Y )

[Hint: Use Part(b) with X1 = (X − Y, Y − Z), X2 = (X,Z), X12 = (X, Y, Z) and
X0 = X − Z. ]

(d) Sum and Difference of Entropy (10 points)
Use the previous part to conclude that for i.i.d (Y, Y ′) random variables

H(Y − Y ′)−H(Y ) ≤ 2(H(Y ′ + Y )−H(Y )).

Solution:

(a)

I(X1;X2) = H(X1)−H(X1|X2)
(i)
= H(X1)−H(X1|X2, Y2)
(ii)

≥ H(X1)−H(X1|Y2)

= I(Y2;X1)

= H(Y2)−H(Y2|X1)
(iii)
= H(Y2)−H(Y2|X1, Y1)
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(iv)

≥ H(Y2)−H(Y2|Y1)

= I(Y1;Y2),

where

(i) follows from the fact that Y2 = G(X2).

(ii) follows from conditioning reduces entropy.

(iii) follows from the fact that Y1 = F (X1).

(iv) follows from conditioning reduces entropy.

(b) Clearly, H(X12) ≤ H(X1, X2), thus H(X1) +H(X2)−H(X12) ≥ H(X1) +H(X2)−
H(X1, X2) = I(X1;X2). Proof is completed by using (a) above.

(c) i. Let X1 = (X − Y, Y − Z), X2 = (X,Z), X0 = X − Z and X12 = (X, Y, Z).
Thus we can have for some functions, F,G,R X0 = F (X1) = G(X2) and X12 =
R(X1, X2). Using (b) above we have:

H(X, Y, Z) + H(X − Z) ≤ H(X − Y, Y − Z) + H(X,Z)

Rearranging and using independence and conditioning reduces entropy,

H(X − Z) ≤ H(X − Y ) + H(Y − Z)−H(Y ).

ii. Replace Y by −Y and noting that H(Y ) = H(−Y ) we have the result.

(d) Use (c)-ii. for i.i.d. X, Y, Z and using H(Y ) = H(X) and H(X + Y ) = H(Y + Z),
we get,

H(X − Z) + H(X) ≤ 2H(X + Y )

Now replace X = Y ′ and Z = Y ′′ to get the bound.
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