EE376A: Midterm Solutions

1. Vin's Idea (30 points)

Vinith is very excited about a new lossless compression idea, and he claims it can beat entropy. Albert is very skeptical, as Vinith got a pretty low grade when he took EE376A. Albert, however, didn't do too well in EE376A either, so now he needs your help to analyze Vinith's scheme.

Vinith: "Suppose X_{1}, X_{2}, \ldots is an i.i.d. Bernoulli-1/2 sequence. We can break up this sequence into its pattern of 'repeats'. For instance, $0001100001 \ldots$ begins with repeats (also known as 'run-lengths') ' 000 ', ' 11 ', and ' 0000 '. If we let L_{i} be the length of the i th repeat, we can represent the sequence by ($X_{1}, L_{1}, L_{2}, \ldots$). For example,

- $1010 \ldots$ would be represented by $(1,1,1,1, \ldots)$
- $11100111110 \ldots$ by $(1,3,2,5, \ldots)$ and
- $001011111110 \ldots$ by $(0,2,1,1,7, \ldots)$.

In particular, I suggest we describe the sequence $X_{1}, X_{2}, \ldots, X_{\sum_{i=1}^{10} L_{i}}$ by describing $\left(X_{1}, L_{1}, L_{2}, \ldots, L_{10}\right)$, which I'm sure would be a heavily compressed representation!!"
(a) (5 points) What is the entropy of the first repeat length $H\left(L_{1}\right)$?
(b) (5 points) Describe an optimal prefix code for L_{1}. What is its expected code-length?
(c) (5 points) What is $H\left(X_{1}, L_{1}, \ldots, L_{10}\right)$?
(d) (5 points) Describe an optimal uniquely decodable code for $\left(X_{1}, L_{1}, \ldots, L_{10}\right)$. What is its expected code-length? Call it "Vinith's code".
(e) (5 points) What is the expected number of source symbols $E\left[\sum_{i=1}^{10} L_{i}\right]$ that Vinith's code encodes?
(f) (5 points) Comment, based on your answers to the previous two parts, on whether Vinith's code is "beating entropy" on average.

Solution:

(a) At each time i, the current repeat will end with probability $1 / 2$. Therefore, each repeat length L_{i} is a geometric random variable with parameter $1 / 2$. Therefore,

$$
H\left(L_{1}\right)=\sum_{j=1}^{\infty} 2^{-j} \log \left(2^{j}\right)=\sum_{j=1}^{\infty} j 2^{-j}=2
$$

(b) An optimum prefix code for L_{1} is
L_{1} Codeword
11

201 where its expected code-length is
3001
$\vdots \quad \vdots$

$$
\sum_{i=1}^{\infty} \frac{1}{2^{i}} i=2 .
$$

(c) Since the process is memoryless, the repeat lengths L_{i} are independent and identically distributed. Therefore $H\left(L_{1}, \ldots, L_{10}\right)=10 H\left(L_{1}\right)=20$. The first symbol X_{1} is independent of the repeat lengths $\left(L_{1}, \ldots, L_{10}\right)$, so the joint entropy is given by

$$
H\left(X_{1}, L_{1}, \ldots, L_{10}\right)=H\left(X_{1}\right)+10 H\left(L_{1}\right)=21
$$

(d) We have to use one bit to describe X_{1}. Since $L_{1}, L_{2}, \ldots, L_{10}$ are i.i.d. geometric random variables with parameter $1 / 2$, we can use the prefix code for L_{1} (which we did in (b)) repeatedly. Since the expected code-length of an optimal prefix code for L_{1} is 2 , the expected code-length will be

$$
1+2 \times 10=21
$$

(e) The expected value of L_{i} is that of a geometric random variable with parameter $1 / 2$: $E\left[L_{i}\right]=2$. Using the linearity of expectation,

$$
E\left[\sum_{i=1}^{10} L_{i}\right]=\sum_{i=1}^{10} E\left[L_{i}\right]=20
$$

(f) Vinith is encoding 20 souce bits using an average of 21-bit-long binary codewords. Thus, on average he is expending more than one bit of description per source bit, and not 'beating the entropy'. .
2. Non-i.i.d. Source (30 points)

Consider a second-order binary Markov process $\left\{X_{i}\right\}_{i \geq 1}$ characterized as follows:

- $P\left(X_{1}=0, X_{2}=0\right)=P\left(X_{1}=1, X_{2}=1\right)=\frac{1}{6}$ and $P\left(X_{1}=0, X_{2}=1\right)=P\left(X_{1}=1, X_{2}=0\right)=\frac{1}{3}$.
- For $n \geq 3$,
- If $X_{n-1}=X_{n-2}$, then $X_{n}=1-X_{n-1}$.
- If $X_{n-1} \neq X_{n-2}$, then X_{n} is drawn as a fair coin flip, independent of $\left\{X_{i}\right\}_{i=1}^{n-1}$.
(a) (6 points) Find an optimal prefix code for the pair (X_{1}, X_{2}), along with its expected code-length.
(b) (6 points) Show that the distribution of $\left(X_{n}, X_{n+1}\right)$ is the same for all $n \geq 1$ (and, hence, the process is stationary).
(c) (6 points) Find the "entropy rate" of the process

$$
\lim _{n \rightarrow \infty} \frac{H\left(X_{1}, X_{2}, \ldots, X_{n}\right)}{n}
$$

[Hint: can justify and use the facts that $H\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\sum_{i=1}^{n} H\left(X_{i} \mid X^{i-1}\right)$, and $H\left(X_{i} \mid X^{i-1}\right)=H\left(X_{i} \mid X_{i-1}, X_{i-2}\right)=H\left(X_{3} \mid X_{2}, X_{1}\right)$ for $\left.i \geq 3\right]$
(d) (6 points) For fixed $n \geq 2$, does there exist a uniquely decodable code for ($X_{1}, X_{2}, \ldots, X_{n}$) whose expected code-length is $H\left(X_{1}, X_{2}, \ldots, X_{n}\right)$? If so, describe one. If not, explain why.
(e) (6 points) Describe a uniquely decodable code for $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ that attains the entropy rate. That is, a code with length function ℓ_{n} such that

$$
\lim _{n \rightarrow \infty} \frac{E\left[\ell_{n}\left(X_{1}, X_{2}, \ldots, X_{n}\right)\right]}{n}
$$

is equal to the entropy rate from part (c).

Solution:

(a) The Huffman tree for $\left(X_{1}, X_{2}\right)$ is

Codeword $\left(X_{1}, X_{2}\right)$

0	$(0,1)$	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	1
10	$(1,0)$	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{2}{3}$	
110	$(0,0)$	$\frac{1}{6}$	$\frac{1}{3}$		
111	$(1,1)$	$\frac{1}{6}$			

Its expected code-length is

$$
1 \times \frac{1}{3}+2 \times \frac{1}{3}+3 \times \frac{1}{6}+3 \times \frac{1}{6}=2 .
$$

(b) We will show that $\left(X_{n}, X_{n+1}\right)$ has the same distribution with (X_{1}, X_{2}) using induction. Clearly, the statement is true for $n=1$. Suppose $\left(X_{k-1}, X_{k}\right)$ has the same distribution with $\left(X_{1}, X_{2}\right)$. Then,

$$
\begin{aligned}
P\left(X_{k}=0, X_{k+1}=0\right) & =P\left(X_{k-1}=0, X_{k}=0, X_{k+1}=0\right)+P\left(X_{k-1}=1, X_{k}=0, X_{k+1}=0\right) \\
& =P\left(X_{k+1}=0 \mid X_{k-1}=1, X_{k}=0\right) P\left(X_{k-1}=1, X_{k}=0\right) \\
& =\frac{1}{2} \cdot \frac{1}{3} \\
& =\frac{1}{6} \\
P\left(X_{k}=0, X_{k+1}=1\right) & =P\left(X_{k-1}=0, X_{k}=0, X_{k+1}=1\right)+P\left(X_{k-1}=1, X_{k}=0, X_{k+1}=1\right)
\end{aligned}
$$

$$
\begin{aligned}
= & P\left(X_{k+1}=1 \mid X_{k-1}=0, X_{k}=0\right) P\left(X_{k-1}=0, X_{k}=0\right) \\
& +P\left(X_{k+1}=1 \mid X_{k-1}=1, X_{k}=0\right) P\left(X_{k-1}=1, X_{k}=0\right) \\
= & 1 \cdot \frac{1}{6}+\frac{1}{2} \cdot \frac{1}{3} \\
= & \frac{1}{3}
\end{aligned}
$$

Similarly, it is easy to show that $P\left(X_{k}=1, X_{k+1}=0\right)=\frac{1}{3}$ and $P\left(X_{k}=1, X_{k+1}=\right.$ 1) $=\frac{1}{6}$.
(c) For $n \geq 3, H\left(X_{1}, X_{2}, \ldots, X_{n}\right)=(n-2) H\left(X_{3} \mid X_{2}, X_{1}\right)+H\left(X_{1}, X_{2}\right)$. Therefore,

$$
\lim _{n \rightarrow \infty} \frac{H\left(X_{1}, X_{2}, \ldots, X_{n}\right)}{n}=H\left(X_{3} \mid X_{2}, X_{1}\right) .
$$

Note that the conditional entropy $H\left(X_{3} \mid X_{2}, X_{1}\right)$ is

$$
\begin{aligned}
H\left(X_{3} \mid X_{2}, X_{1}\right)= & \frac{1}{6} \cdot H\left(X_{3} \mid X_{2}=0, X_{1}=0\right)+\frac{1}{6} \cdot H\left(X_{3} \mid X_{2}=1, X_{1}=1\right) \\
& +\frac{1}{3} \cdot H\left(X_{3} \mid X_{2}=1, X_{1}=0\right)+\frac{1}{3} \cdot H\left(X_{3} \mid X_{2}=0, X_{1}=1\right) \\
= & \frac{1}{6} \cdot 0+\frac{1}{6} \cdot 0+\frac{1}{3} \cdot 1+\frac{1}{3} \cdot 1 \\
= & \frac{2}{3} .
\end{aligned}
$$

(d) For $n \geq 2$,

$$
P\left(x_{1}, x_{2}, \ldots, x_{n}\right)=P\left(x_{1}, x_{2}\right) \prod_{i=3}^{n} P\left(x_{i} \mid x_{i-1}, x_{i-2}\right)
$$

where $P\left(x_{1}, x_{2}\right)$ is either $\frac{1}{3}$ or $\frac{1}{6}$, and $P\left(x_{i} \mid x_{i-1}, x_{i-2}\right)$ takes value from $\left\{1,0, \frac{1}{2}\right\}$. Therefore, it is not a diadic distribution, we can not achieve $H\left(X_{1}, X_{2}, \ldots, X_{n}\right)$.
(e) Consider the following coding scheme.

- Use any code for X_{1}, X_{2} (e.g. Huffman). This will be negligible in terms of average code-length.
- For $n \geq 3$, if $X_{n-1} \neq X_{n-2}$ describe X_{n} using 1 bit. If $X_{n-1}=X_{n-2}$, then send nothing since X_{n} will be deterministic.
Since $P\left(X_{n-1}=X_{n-2}\right)=\frac{2}{3}$, the average code-length per symbol will be $\frac{2}{3}$.
Note: we can use Vin's code to achieve the entropy rate. Let L_{i} be a length of i-th repeat. Then, $Z_{i}=L_{i}-1$ is i.i.d. Bernoulli- $1 / 2$ random process and $\left(X_{1}, Z_{1}, Z_{2}, \ldots\right)$ will be a compressed version of $\left(X_{1}, X_{2}, \ldots\right)$. For given compressed version ($X_{1}, Z_{1}, Z_{2}, \ldots, Z_{m}$), the expected number of encoded source symbols is

$$
\mathbb{E}\left[L_{1}+L_{2}+\cdots+L_{m}\right]=\frac{3}{2} m .
$$

Therefore, we can argue that

$$
\lim _{n \rightarrow \infty} \frac{\mathbb{E}\left[l_{n}\left(X_{1}, X_{2}, \ldots, X_{n}\right)\right]}{n}=\frac{2}{3} .
$$

3. Entropy of a Sum and a Difference of I.I.D. Random Variables (40 points) We will prove that if $\left(Y, Y^{\prime}\right)$ are i.i.d. discrete random variables then:

$$
H\left(Y-Y^{\prime}\right)-H(Y) \leq 2\left(H\left(Y^{\prime}+Y\right)-H(Y)\right)
$$

We will prove this inequality in the following steps.
(a) Data Processing Inequality for Mutual Information (10 points)

Let X_{1}, X_{2} be discrete random variables. Also, let $Y_{1}=F\left(X_{1}\right)$ and $Y_{2}=G\left(X_{2}\right)$ for some functions, $F(\cdot), G(\cdot)$. Prove that:

$$
I\left(X_{1} ; X_{2}\right) \geq I\left(Y_{1} ; Y_{2}\right)
$$

(b) Submodularity (10 points)

Suppose that there exist functions F, G and R such that $X_{0}=F\left(X_{1}\right)=G\left(X_{2}\right)$ and $X_{12}=R\left(X_{1}, X_{2}\right)$, where X_{1}, X_{2} are discrete random variables. Use the previous part to prove that

$$
H\left(X_{12}\right)+H\left(X_{0}\right) \leq H\left(X_{1}\right)+H\left(X_{2}\right) .
$$

(c) Ruzsa Triangle Inequality (10 points)

Let X, Y, Z be independent discrete random variables. Use Part (b) to prove that:
i. $H(X-Z) \leq H(X-Y)+H(Y-Z)-H(Y)$
ii. $H(X-Z) \leq H(X+Y)+H(Y+Z)-H(Y)$
[Hint: Use Part(b) with $X_{1}=(X-Y, Y-Z), X_{2}=(X, Z), X_{12}=(X, Y, Z)$ and $\left.X_{0}=X-Z.\right]$
(d) Sum and Difference of Entropy (10 points)

Use the previous part to conclude that for i.i.d $\left(Y, Y^{\prime}\right)$ random variables

$$
H\left(Y-Y^{\prime}\right)-H(Y) \leq 2\left(H\left(Y^{\prime}+Y\right)-H(Y)\right)
$$

Solution:

(a)

$$
\begin{aligned}
I\left(X_{1} ; X_{2}\right) & =H\left(X_{1}\right)-H\left(X_{1} \mid X_{2}\right) \\
& \stackrel{(i)}{=} H\left(X_{1}\right)-H\left(X_{1} \mid X_{2}, Y_{2}\right) \\
& \stackrel{(i i)}{\geq} H\left(X_{1}\right)-H\left(X_{1} \mid Y_{2}\right) \\
& =I\left(Y_{2} ; X_{1}\right) \\
& =H\left(Y_{2}\right)-H\left(Y_{2} \mid X_{1}\right) \\
& \stackrel{(i i i)}{=} H\left(Y_{2}\right)-H\left(Y_{2} \mid X_{1}, Y_{1}\right)
\end{aligned}
$$

$$
\begin{array}{ll}
\stackrel{(i v)}{\geq} & H\left(Y_{2}\right)-H\left(Y_{2} \mid Y_{1}\right) \\
= & I\left(Y_{1} ; Y_{2}\right),
\end{array}
$$

where
(i) follows from the fact that $Y_{2}=G\left(X_{2}\right)$.
(ii) follows from conditioning reduces entropy.
(iii) follows from the fact that $Y_{1}=F\left(X_{1}\right)$.
(iv) follows from conditioning reduces entropy.
(b) Clearly, $H\left(X_{12}\right) \leq H\left(X_{1}, X_{2}\right)$, thus $H\left(X_{1}\right)+H\left(X_{2}\right)-H\left(X_{12}\right) \geq H\left(X_{1}\right)+H\left(X_{2}\right)-$ $H\left(X_{1}, X_{2}\right)=I\left(X_{1} ; X_{2}\right)$. Proof is completed by using (a) above.
(c) i. Let $X_{1}=(X-Y, Y-Z), X_{2}=(X, Z), X_{0}=X-Z$ and $X_{12}=(X, Y, Z)$. Thus we can have for some functions, F,G,R $X_{0}=F\left(X_{1}\right)=G\left(X_{2}\right)$ and $X_{12}=$ $R\left(X_{1}, X_{2}\right)$. Using (b) above we have:

$$
H(X, Y, Z)+H(X-Z) \leq H(X-Y, Y-Z)+H(X, Z)
$$

Rearranging and using independence and conditioning reduces entropy,

$$
H(X-Z) \leq H(X-Y)+H(Y-Z)-H(Y)
$$

ii. Replace Y by $-Y$ and noting that $H(Y)=H(-Y)$ we have the result.
(d) Use (c)-ii. for i.i.d. X, Y, Z and using $H(Y)=H(X)$ and $H(X+Y)=H(Y+Z)$, we get,

$$
H(X-Z)+H(X) \leq 2 H(X+Y)
$$

Now replace $X=Y^{\prime}$ and $Z=Y^{\prime \prime}$ to get the bound.

