EE376A - Information Theory
 Midterm, Tuesday February 10th

Instructions:

- You have two hours, 7PM - 9PM
- The exam has 3 questions, totaling 100 points.
- Please start answering each question on a new page of the answer booklet.
- You are allowed to carry the textbook, your own notes and other course related material with you. Electronic reading devices [including kindles, laptops, ipads, etc.] are allowed, provided they are used solely for reading pdf files already stored on them and not for any other form of communication or information retrieval.
- You are required to provide a detailed explanation of how you arrived at your answers.
- You can use previous parts of a problem even if you did not solve them.
- As throughout the course, entropy (H) and Mutual Information (I) are specified in bits.
- \log is taken in base 2 .
- Throughout the exam 'prefix code' refers to a variable length code satisfying the prefix condition.
- Good Luck!

1. Mix of Questions (40 points)

You only need to answer four out of the five questions presented below. Each of them is worth 10 points.

1) Let $Z_{1}, Z_{2}, Z_{3}, \ldots$ be i.i.d. random variables that take values " 0 " and " 1 " with equal probability. Further, let

$$
\begin{equation*}
X_{i}=\sum_{j=1}^{i} Z_{j}, \text { for } 1 \leq i \leq n \tag{1}
\end{equation*}
$$

Find $I\left(X_{1} ; X_{2}, X_{3}, \ldots, X_{n}\right)$.
2) Let $U_{1}, U_{2}, U_{3}, \ldots$ be i.i.d. taking values A, B, C, D, E and F, with the following distribution:

Symbol	A	B	C	D	E	F
Probability	$1 / 2$	$1 / 4$	$1 / 8$	$1 / 16$	$1 / 32$	$1 / 32$

(a) Compute $H\left(U_{1}\right)$.
(b) What is the most probable sequence of a given length n ? What is its probability?
(c) Recall the definition of the ϵ-typical set for a memoryless source U :

$$
\begin{equation*}
A_{\epsilon}^{(n)}=\left\{u^{n}:\left|-\frac{1}{n} \log p\left(u^{n}\right)-H(U)\right| \leq \epsilon\right\} \tag{2}
\end{equation*}
$$

Does the sequence you found in part (b) belong to $A_{\epsilon}^{(n)}$ for $\epsilon=0.1$? How about for $\epsilon=1$?
3) Let $\left(X_{i}, Y_{i}\right)$ be i.i.d. $\sim p(x, y)$. Find the limit in probability, as $n \rightarrow \infty$, of

$$
\begin{equation*}
\frac{1}{n} \log \frac{p\left(X^{n}, Y^{n}\right)}{p\left(X^{n}\right) p\left(Y^{n}\right)} . \tag{3}
\end{equation*}
$$

4) Consider a source with five symbols $u_{1}, u_{2}, u_{3}, u_{4}, u_{5}$, with probabilities $p\left(u_{1}\right) \geq p\left(u_{2}\right) \geq$ $p\left(u_{3}\right) \geq p\left(u_{4}\right) \geq p\left(u_{5}\right)$.
(a) Suppose $p\left(u_{1}\right) \geq p\left(u_{2}\right)=p\left(u_{3}\right)=p\left(u_{4}\right)=p\left(u_{5}\right)$. Find the minimum value of q such that $p\left(u_{1}\right) \geq q$ implies $n_{1}=1$. Here n_{1} denotes the length of the codeword associated with symbol u_{1} generated by a Huffman code applied to the source.
(b) Suppose $p\left(u_{1}\right) \geq p\left(u_{2}\right) \geq p\left(u_{3}\right) \geq p\left(u_{4}\right)>p\left(u_{5}\right)=0$. Find the largest value of r such that $p\left(u_{1}\right) \leq r$ implies $n_{1}>1$. Here n_{1} denotes the length of the codeword associated with symbol u_{1} generated by a Huffman code applied to the source.
5) Consider a random variable X which takes on four possible values with probabilities ($1 / 3,1 / 3,1 / 4,1 / 12)$.
(a) Construct a Huffman code for this random variable.
(b) Show that there exist two different sets of optimal lengths for the codewords, namely, show that codeword length assignments $(1,2,3,3)$ and $(2,2,2,2)$ are both optimal.
(c) Are there optimal codes with codeword lengths for some symbols that exceed the Shannon code length $\left\lceil\log \frac{1}{p(x)}\right\rceil$? (Hint: Check the codeword lengths from the previous part.)

2. Non-prefix Code (30 points)

Suppose $p(x)$ is a PMF over $\mathcal{X}=\{1,2, \cdots, K\}$, with $p(1)>p(2)>\cdots>p(K)$. We want to encode a random variable $X \sim p$. We care about encoding only this one random variable, therefore we do not require Unique Decodability but merely that the code be one-to-one, i.e., a different codeword for each of the K source symbols. Note that even the zero length codeword is valid, i.e., sending nothing (the empty string) can represent one of the source symbols.
(a) (5 points) Construct a coding scheme $c(X)$ that has the minimum expected code length. Let $l(i)$ be the length of the codeword of symbol i. Show that $l(i)=\lfloor\log i\rfloor$, where $\lfloor a\rfloor$ is the greatest integer no bigger than a.
(b) (10 points) Prove that the coding scheme from Part (a) satisfies

$$
l(i) \leq-\log p(i)
$$

and conclude that the minimum expected code length is less than or equal to the entropy, i.e.,

$$
\mathbb{E}[l(X)] \leq H(X)
$$

[Hint: Note that $p(i)$ is the i-th largest value, and therefore, $P(i) \leq \frac{1}{i}$]
(c) (15 points) Show that

$$
\mathbb{E}[l(X)] \geq H(X)-1-\log (1+\log K)
$$

That is, lossless codes, even if not Uniquely Decodable, cannot beat the entropy by much.
[Hint : You may want to use the fact that $\sum_{i=1}^{K} \frac{1}{i} \leq 1+\log K$]

3. The prime number theorem (30 points)

Some time around 300 B.C., someone showed that there are infinitely many prime numbers - we know this because a proof appears in Euclid's famous Elements. In this problem, we will not only show that there are infinitely many prime numbers, but we will also give a lower bound on the rate of their growth using information theory.
Let $\pi(n)$ denote the number of primes no greater than n. Note that every positive integer n has a unique prime factorization of the form

$$
\begin{equation*}
n=\Pi_{i=1}^{\pi(n)} p_{i}^{X_{i}}, \tag{4}
\end{equation*}
$$

where $p_{1}, p_{2}, p_{3}, \ldots$ are the primes, that is, $p_{1}=2, p_{2}=3, p_{3}=5$, etc., and $X_{i}=X_{i}(n)$ is the non-negative integer representing the multiplicity of p_{i} in the prime factorization of n.
Let N be uniformly distributed on $\{1,2,3 \ldots n\}$.
(a) (8 points) Show that $X_{i}(N)$ is an integer-valued random variable satisfying

$$
\begin{equation*}
0 \leq X_{i}(N) \leq \log n \tag{5}
\end{equation*}
$$

[Hint : Try finding a lower and an upper bound for $p_{i}^{X_{i}(N)}$]
(b) (22 points) Show that

$$
\begin{equation*}
\log n=H(N) \leq \pi(n) \log (\log n+1) \tag{6}
\end{equation*}
$$

Thus, not only is $\pi(n) \rightarrow \infty$ but in fact $\pi(n) \geq \frac{\log n}{\log (\log n+1)}$.
[Hint : Do $X_{1}(N), X_{2}(N), \ldots, X_{\pi(n)}(N)$ determine N ? What does that say about the respective entropies?].

