
EE376A - Information Theory
Midterm, Tuesday February 10th Solutions

Instructions:

• You have two hours, 7PM - 9PM

• The exam has 3 questions, totaling 100 points.

• Please start answering each question on a new page of the answer booklet.

• You are allowed to carry the textbook, your own notes and other course related ma-
terial with you. Electronic reading devices [including kindles, laptops, ipads, etc.] are
allowed, provided they are used solely for reading pdf files already stored on them and
not for any other form of communication or information retrieval.

• You are required to provide a detailed explanation of how you arrived at your answers.

• You can use previous parts of a problem even if you did not solve them.

• As throughout the course, entropy (H) and Mutual Information (I) are specified in
bits.

• log is taken in base 2.

• Throughout the exam ‘prefix code’ refers to a variable length code satisfying the prefix
condition.

• Good Luck!

Midterm Page 1 of 9



1. Mix of Questions (40 points)

You only need to answer four out of the five questions presented below. Each of them
is worth 10 points.

1) Let Z1, Z2, Z3, . . . be i.i.d. random variables that take values “0” and “1” with equal
probability. Further, let

Xi =
i∑

j=1

Zj, for 1 ≤ i ≤ n. (1)

Find I(X1;X2, X3, . . . , Xn).

2) Let U1, U2, U3, . . . be i.i.d. taking values A,B,C,D,E and F , with the following
distribution:

Symbol A B C D E F
Probability 1/2 1/4 1/8 1/16 1/32 1/32

(a) Compute H(U1).

(b) What is the most probable sequence of a given length n? What is its probability?

(c) Recall the definition of the ε-typical set for a memoryless source U :

A(n)
ε =

{
un :

∣∣∣∣− 1

n
log p(un)−H(U)

∣∣∣∣ ≤ ε

}
. (2)

Does the sequence you found in part (b) belong to A
(n)
ε for ε = 0.1? How about

for ε = 1?

3) Let (Xi, Yi) be i.i.d. ∼ p(x, y). Find the limit in probability, as n→∞, of

1

n
log

p(Xn, Y n)

p(Xn)p(Y n)
. (3)

4) Consider a source with five symbols u1, u2, u3, u4, u5, with probabilities p(u1) ≥ p(u2) ≥
p(u3) ≥ p(u4) ≥ p(u5).

(a) Suppose p(u1) ≥ p(u2) = p(u3) = p(u4) = p(u5). Find the minimum value of q
such that p(u1) ≥ q implies n1 = 1. Here n1 denotes the length of the codeword
associated with symbol u1 generated by a Huffman code applied to the source.

(b) Suppose p(u1) ≥ p(u2) ≥ p(u3) ≥ p(u4) > p(u5) = 0. Find the largest value of r
such that p(u1) ≤ r implies n1 > 1. Here n1 denotes the length of the codeword
associated with symbol u1 generated by a Huffman code applied to the source.
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5) Consider a random variable X which takes on four possible values with probabilities
(1/3, 1/3, 1/4, 1/12).

(a) Construct a Huffman code for this random variable.

(b) Show that there exist two different sets of optimal lengths for the codewords,
namely, show that codeword length assignments (1, 2, 3, 3) and (2, 2, 2, 2) are both
optimal.

(c) Are there optimal codes with codeword lengths for some symbols that exceed the
Shannon code length dlog 1

p(x)
e? (Hint: Check the codeword lengths from the

previous part.)

Solution:

1)

I(X1;X2, X3, . . . , Xn) =H(X2, X3, . . . , Xn)−H(X2, X3, . . . , Xn|X1)

=H(X2) +
n∑
i=3

H(Xi|X2, . . . , Xi−1)−
n∑
i=2

H(Xi|X1, . . . , Xi−1)

=H(X2) +
n∑
i=3

H(Zi)−
n∑
i=2

H(Zi)

=H(X2)−H(Z2)

=
3

2
− 1

=
1

2
,

since X2 takes value “0” with probability 1/4, value “1” with probability 1/2 and
value “2” with probability 1/4, which gives H(X2) = 3/2.

2) (a) H(U1) = 1/2 log 2 + 1/4 log 4 + 1/8 log 8 + 1/16 log 16 + 2/32 log 32 = 31/16.

(b) The most probable sequence is the symbol A repeated n times, that is, AAAAAAA. . ..
Its probability is (1

2
)n.

(c) Note that − 1
n

log p(un) = − 1
n

log(1
2
)n = 1. We also have from part (a) that

H(U) = 31
16

. Therefore,

∣∣∣∣− 1

n
log p(un)−H(U)

∣∣∣∣ =

∣∣∣∣1− 31

16

∣∣∣∣
=

15

16
> 0.1 and < 1

Thus the most typical sequence An belongs to A
(n)
ε for ε = 1, but not for ε = 0.1.
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3) First, note that we have p(Xn, Y n) =
∏n

i=1 p(Xi, Yi), p(X
n) =

∏n
i=1 p(Xi) and p(Y n) =∏n

i=1 p(Yi).

1

n
log

p(Xn, Y n)

p(Xn)p(Y n)
=

1

n
log

∏n
i=1 p(Xi, Yi)∏n

i=1 p(Xi)
∏n

i=1 p(Yi)

=
1

n

n∑
i=1

log
p(Xi, Yi)

p(Xi)p(Yi)

n→∞−−−→ E[log
p(X, Y )

p(X)p(Y )
]

= I(X;Y ),

where we have used the Law of Large Numbers.

4) (a) Note that p(u2) = p(u3) = p(u4) = p(u5) = (1 − p(u1))/4. Without loss of
generality, the Huffman code will first combine symbols u4 and u5, creating a
super-symbol with probability (1 − p(u1))/2, which is bigger than (1 − p(1))/4.
Thus the Huffman code will then combine symbols u2 and u3, creating another
super-symbol with probability (1 − p(u1))/2. For symbol u1 to be assigned a
codeword with length 1, we need the Huffman code to combine next the two
super-symbols. Therefore, we must have p(u1) > (1− p(u1))/2. Or, equivalently,

p(u1) >
1

3
. (4)

(b) In this case, the Huffman code will first combine symbols u3 and u4 into a super-
symbol with probability p(u3) +p(u4). For the length of the codeword assigned to
symbol u1 to be bigger than 1, we must have p(u1) < p(u3) + p(u4), which implies
p(u2) < p(u3) + p(u4), since p(u2) > p(u1). For p(u3) + p(u4) to be as small as
possible, we must have p(u1) = p(u2), which implies p(u3) + p(u4) = 1 − 2p(u1).
Thus p(u1) must satisfy p(u1) < 1− 2p(u1), which implies

p(u1) <
1

3
. (5)

5) (a) Applying the Huffman algorithm gives us the following table: which gives code-

Code Symbol Probability
0 1 1/3 1/3 2/3 1
11 2 1/3 1/3 1/3
101 3 1/4 1/3
100 4 1/12

word lengths of 1, 2, 3, 3 for the different codewords.

(b) Both set of lengths 1, 2, 3, 3 and 2, 2, 2, 2 satisfy the Kraft inequality, and they both
achieve the same expected length (2 bits) for the above distribution. Therefore
they are both optimal.
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(c) The symbol with probability 1/4 has an Huffman code of length 3, which is greater
than dlog 1

p(x)
e. Thus the Huffman code for a particular symbol may be longer than

the Shannon code for that symbol. But on the average, the Huffman code cannot
be longer than the Shannon code.
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2. Non-prefix Code (30 points)

Suppose p(x) is a PMF over X = {1, 2, · · · , K}, with p(1) > p(2) > · · · > p(K). We
want to encode a random variable X ∼ p. We care about encoding only this one random
variable, therefore we do not require Unique Decodability but merely that the code be
one-to-one, i.e., a different codeword for each of the K source symbols. Note that even
the zero length codeword is valid, i.e., sending nothing (the empty string) can represent
one of the source symbols.

(a) (5 points) Construct a coding scheme c(X) that has the minimum expected code
length. Let l(i) be the length of the codeword of symbol i. Show that l(i) = blog ic,
where bac is the greatest integer no bigger than a.

(b) (10 points) Prove that the coding scheme from Part (a) satisfies

l(i) ≤ − log p(i)

and conclude that the minimum expected code length is less than or equal to the
entropy, i.e.,

E[l(X)] ≤ H(X).

[Hint : Note that p(i) is the i-th largest value, and therefore, P (i) ≤ 1
i
]

(c) (15 points) Show that

E[l(X)] ≥ H(X)− 1− log(1 + logK).

That is, lossless codes, even if not Uniquely Decodable, cannot beat the entropy by
much.

[Hint : You may want to use the fact that
∑K

i=1
1
i
≤ 1 + logK]

Solution: Non-prefix Code

(a) Assign the codewords in the following order

φ, 0, 1, 00, 01, 10, 11, 000, 001, · · ·

This gives us l(i) = blog ic.
(b) Note that p(i) is the i-th largest value, therefore p(i) ≤ 1

i
. Thus,

l(i) =blog ic
≤ log i

≤ log
1

p(i)

=− log p(i)

This implies E[l(i)] ≤ E[− log p(X)] = H(X).
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(c)

E[l(X)] =
K∑
i=1

p(i)blog ic

≥
K∑
i=1

p(i)(log i− 1)

=
K∑
i=1

p(i)(− log p(i) + log ip(i)− 1)

=H(X)− 1−
K∑
i=1

p(i) log
1

ip(i)

≥H(X)− 1− log

(
K∑
i=1

p(i)
1

ip(i)

)

≥H(X)− 1− log

(
K∑
i=1

1

i

)
≥H(X)− 1− log(1 + logK)
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3. The prime number theorem (30 points)

Some time around 300 B.C., someone showed that there are infinitely many prime num-
bers – we know this because a proof appears in Euclid’s famous Elements. In this problem,
we will not only show that there are infinitely many prime numbers, but we will also give
a lower bound on the rate of their growth using information theory.

Let π(n) denote the number of primes no greater than n. Note that every positive integer
n has a unique prime factorization of the form

n = Π
π(n)
i=1 p

Xi
i , (6)

where p1, p2, p3, . . . are the primes, that is, p1 = 2, p2 = 3, p3 = 5, etc., and Xi = Xi(n)
is the non-negative integer representing the multiplicity of pi in the prime factorization
of n.

Let N be uniformly distributed on {1, 2, 3 . . . n}.

(a) (8 points) Show that Xi(N) is an integer-valued random variable satisfying

0 ≤ Xi(N) ≤ log n. (7)

[Hint : Try finding a lower and an upper bound for p
Xi(N)
i ]

(b) (22 points) Show that

log n = H(N) ≤ π(n) log(log n+ 1). (8)

Thus, not only is π(n)→∞ but in fact π(n) ≥ logn
log(logn+1)

.

[Hint : Do X1(N), X2(N), . . . , Xπ(n)(N) determine N? What does that say about
the respective entropies?].

Solution:

(a) 0 ≤ Xi(N) is trivial. Note also that 2Xi ≤ pXi
i ≤ N ≤ n.

Thus, combining both results, 0 ≤ Xi(N) ≤ log n, as we wanted to show.

(b)

log n = H(N) (9)

= H(X1, X2 . . . Xπ(n)) (10)

=

π(n)∑
i=1

H(Xi|X1, . . . , Xi−1) (11)

≤ H(X1) +H(X2) + . . . H(Xπ(n)) (12)
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≤ π(n) log(log n+ 1), (13)

where the first step follows because there is a one-to-one mapping between N and
X1, X2 . . . Xπ(n). The second step is by the chain rule for entropy. The next step is
because conditioning reduces entropy, and the last one is because the distribution
that maximizes entropy is the uniform one, there are π(n) entropy terms, and the
Xi’s can take at most log n+ 1 different values.
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