EE376A - Information Theory Final, Thursday March 22nd

Instructions:

- You have three hours, 12:15PM - 3:15PM
- The exam has 5 questions, totaling 100 points.
- Please start answering each question on a new page of the answer booklet.
- You are allowed to carry the textbook, your own notes and other course related material with you. Electronic reading devices [including kindles, laptops, ipads, etc.] are allowed, provided they are used solely for reading pdf files already stored on them and not for any other form of communication or information retrieval.
- Calculators are allowed for numerical computations.
- You are required to provide a sufficiently detailed explanation of how you arrived at your answers.
- You can use previous parts of a problem even if you did not solve them.
- As throughout the course, entropy (H) and Mutual Information (I) are specified in bits.
- \log is taken in base 2 .
- Good Luck!

1. Universal Compression (20 points)

In this problem, we describe a lossless compression scheme that asymptotically (for large n) achieves entropy for any iid source. Let x^{n} be a particular sequence, where each symbol is in alphabet $\mathcal{X}=\{1,2,3, \ldots,|\mathcal{X}|\}$. Let $P_{x^{n}}$ be the empirical distribution of the sequence x^{n}. Consider the compressor C for the sequence x^{n} :

- In the first step, the compressor encodes the empirical distribution $P_{x^{n}}$ of the sequence, using a fixed-length code.
- In the second step, the compressor outputs the index of the sequence in the type class $\mathcal{T}\left(P_{x^{n}}\right)$, using $\left\lceil\log _{2}\left|\mathcal{T}\left(P_{x^{n}}\right)\right|\right\rceil$ bits.
(a) Describe the operations of the decoder D, when a sequence x^{n} is compressed using the compressor C.
(b) Let $L\left(x^{n}\right)$ be number of bits required to encode a sequence x^{n} using the compressor. Show that:

$$
L\left(x^{n}\right) \leq|\mathcal{X}| \log _{2}(n+1)+n H\left(P_{x^{n}}\right)+2
$$

(c) Let the sequence X^{n} be generated i.i.d according to the distribution $q(x)$. We define the rate of the compressor to be R :

$$
R=\frac{\mathbb{E}\left[L\left(X^{n}\right)\right]}{n}
$$

Show that for any distribution $q(x)$, the rate R converges to $H(q)$ as $n \rightarrow \infty$.
(d) Let $f: \mathcal{X} \rightarrow \mathbb{R}$ be an arbitrary function, and let $\bar{f}\left(x^{n}\right)=\frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right)$. Show that it is possible to compute $\bar{f}\left(x^{n}\right)$ from the compressed sequence without decoding it completely. How many bits of the compressed sequence need to be read for computing $\bar{f}\left(x^{n}\right)$?

Solution:

(a) The decoder decodes the empirical distribution $P_{x^{n}}$ from the first fixed-length code, and then using the index in the second part to find the sequence in $\mathcal{T}\left(P_{x^{n}}\right)$.
(b) The number of types is at most $(n+1)^{|\mathcal{X}|}$, thus the fixed-length code is of length at $\operatorname{most}\left\lceil\log _{2}(n+1)^{|\mathcal{X}|}\right\rceil \leq|\mathcal{X}| \log _{2}(n+1)+1$. We also know from class that $\left|\mathcal{T}\left(P_{x^{n}}\right)\right| \leq$ $2^{n H\left(P_{x^{n}}\right)}$, and thus the code in the second step has length at most $\left\lceil\log _{2}\left|\mathcal{T}\left(P_{x^{n}}\right)\right|\right\rceil \leq$ $n H\left(P_{x^{n}}\right)+1$. Summing up gives the desired answer.
(c) Note that $H(P)$ is concave in P, we have

$$
\begin{aligned}
R=\frac{\mathbb{E}\left[L\left(X^{n}\right)\right]}{n} & \leq \frac{|\mathcal{X}| \log _{2}(n+1)+2}{n}+\mathbb{E} H\left(P_{X^{n}}\right) \\
& \leq \frac{|\mathcal{X}| \log _{2}(n+1)+2}{n}+H\left(\mathbb{E} P_{X^{n}}\right) \\
& =\frac{|\mathcal{X}| \log _{2}(n+1)+2}{n}+H(q) \xrightarrow{n \rightarrow \infty} H(q) .
\end{aligned}
$$

On the other hand, $R \geq H(q)$ for any lossless code with source distribution $q(x)$, so the rate converges to $H(q)$.
(d) We only need to know the type of $P_{x^{n}}$ to compute $\bar{f}\left(x^{n}\right)$. Hence, only $|\mathcal{X}| \log _{2}(n+$ 1) +1 bits at the beginning of the compressed sequence need to be read.

2. Rate-Distortion function for pairs of random variables (20 points)

Let X, Y be independent sources, with rate distortion functions $R_{X}(D)$ and $R_{Y}(D)$, corresponding to distortion functions $d_{X}: \mathcal{X} \times \hat{\mathcal{X}} \rightarrow \mathbb{R}^{+}$and $d_{Y}: \mathcal{Y} \times \hat{\mathcal{Y}} \rightarrow \mathbb{R}^{+}$respectively. We want to perform lossy compression on the product source (X, Y), where the distortion measure $d_{X, Y}$ is given by:

$$
d_{X, Y}\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)=d_{X}\left(x, x^{\prime}\right)+d_{Y}\left(y, y^{\prime}\right)
$$

Let $R(D)$ be the rate distortion function corresponding to the product source (X, Y) and the distortion $d_{X, Y}$.
(a) Show that if X, Y are independent, then for any \hat{X}, \hat{Y} :

$$
I(X, Y ; \hat{X}, \hat{Y}) \geq I(X ; \hat{X})+I(Y ; \hat{Y})
$$

(b) Show the following lower bound on $R(D)$:

$$
R(D) \geq \min _{D_{1}+D_{2} \leq D}\left[R_{X}\left(D_{1}\right)+R_{Y}\left(D_{2}\right)\right]
$$

(c) Show that the lower bound on $R(D)$ is achievable, i.e.,

$$
R(D) \leq \min _{D_{1}+D_{2} \leq D}\left[R_{X}\left(D_{1}\right)+R_{Y}\left(D_{2}\right)\right]
$$

(d) Let X, Y be independent binary random variables, distributed as $X \sim \operatorname{Ber}(0.5)$ and $Y \sim \operatorname{Ber}(0.3)$. Find the value of $R(D)$ for the product source (X, Y), for $D=0.4$ where d_{X} and d_{Y} are Hamming distortions.
(you can leave the final answers in terms of binary entropy function)
(e) Let X, Y be independent Gaussian random variables distributed as $X \sim \mathcal{N}(0,1)$ and $Y \sim \mathcal{N}(0,4)$. Find the value of $R(D)$ for the product source (X, Y), for $D=4$ and mean square distortion:

$$
d_{X, Y}\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)=\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}
$$

How many bits/symbol are used to describe X ?

Solution:

(a) The following chain of inequalities holds:

$$
\begin{aligned}
I(X, Y ; \hat{X}, \hat{Y}) & =H(X, Y)-H(X, Y \mid \hat{X}, \hat{Y}) \\
& =H(X)+H(Y)-H(X \mid \hat{X}, \hat{Y})-H(Y \mid X, \hat{X}, \hat{Y}) \\
& \geq H(X)+H(Y)-H(X \mid \hat{X})-H(Y \mid \hat{Y}) \\
& =I(X ; \hat{X})+I(Y ; \hat{Y})
\end{aligned}
$$

(b) Due to the additive structure of $d_{X, Y}$, we have

$$
\begin{aligned}
R(D)=R^{(I)}(D) & =\min _{p(\hat{x}, \hat{y} \mid x, y): \mathbb{E} d_{X, Y}((x, y),(\hat{x}, \hat{y})) \leq D} I(X, Y ; \hat{X}, \hat{Y}) \\
& \geq \min _{p(\hat{x}, \hat{y} \mid x, y): \mathbb{E} d_{X, Y}((x, y),(\hat{x}, \hat{y})) \leq D} I(X ; \hat{X})+I(Y ; \hat{Y}) \\
& \geq \min _{D_{1}+D_{2} \leq D}\left(\min _{p(\hat{x}, \hat{y} \mid x, y): \mathbb{E} d_{X}(x, \hat{x}) \leq D_{1}} I(X ; \hat{X})+\min _{p(\hat{x}, \hat{y} \mid x, y): \mathbb{E} d_{Y}(y, \hat{y}) \leq D_{2}} I(Y ; \hat{Y})\right) \\
& =\min _{D_{1}+D_{2} \leq D}\left(\min _{p(\hat{x} \mid x): \mathbb{E} d_{X}(x, \hat{x}) \leq D_{1}} I(X ; \hat{X})+\min _{p(\hat{y} \mid y): \mathbb{E} d_{Y}(y, \hat{y}) \leq D_{2}} I(Y ; \hat{Y})\right) \\
& =\min _{D_{1}+D_{2} \leq D} R_{X}^{(I)}\left(D_{1}\right)+R_{Y}^{(I)}\left(D_{2}\right) \\
& =\min _{D_{1}+D_{2} \leq D} R_{X}\left(D_{1}\right)+R_{Y}\left(D_{2}\right) .
\end{aligned}
$$

(c) For any $D_{1}, D_{2} \geq 0$ with $D_{1}+D_{2} \leq D$, let $p^{*}(\hat{x} \mid x), p^{*}(\hat{y} \mid y)$ be the minimum achieving distributions of $R_{X}^{(I)}\left(D_{1}\right), R_{Y}^{(I)}\left(D_{2}\right)$, respectively. Now consider $p(\hat{x}, \hat{y} \mid x, y)=$ $p^{*}(\hat{x} \mid x) p^{*}(\hat{y} \mid y)$, then $\mathbb{E} d_{X, Y}((X, Y),(\hat{X}, \hat{Y}))=\mathbb{E} d_{X}(X, \hat{X})+\mathbb{E} d_{Y}(Y, \hat{Y}) \leq D_{1}+D_{2} \leq$ D. Moreover, (X, \hat{X}) is independent of (Y, \hat{Y}), and thus

$$
\begin{aligned}
R(D)=R^{(I)}(D) & \leq I(X, Y ; \hat{X}, \hat{Y})=I(X ; \hat{X})+I(Y ; \hat{Y}) \\
& \leq R_{X}^{(I)}\left(D_{1}\right)+R_{Y}^{(I)}\left(D_{2}\right)=R_{X}\left(D_{1}\right)+R_{Y}\left(D_{2}\right)
\end{aligned}
$$

This inequality holds for any $D_{1}+D_{2} \leq D$, and the result follows.
(d) By (b) and (c), we have

$$
\begin{aligned}
R(0.4) & =\min _{D_{1}+D_{2} \leq 0.4} R_{X}\left(D_{1}\right)+R_{Y}\left(D_{2}\right) \\
& =\min _{D_{1}+D_{2} \leq 0.4} H(0.5)-H\left(\min \left\{D_{1}, 0.5\right\}\right)+H(0.3)-H\left(\min \left\{D_{2}, 0.3\right\}\right) \\
& \geq \min _{D_{1}+D_{2} \leq 0.4} H(0.5)+H(0.3)-2 H\left(\frac{\min \left\{D_{1}, 0.5\right\}+\min \left\{D_{2}, 0.3\right\}}{2}\right) \\
& \geq \min _{D_{1}+D_{2} \leq 0.4} H(0.5)+H(0.3)-2 H\left(\frac{D_{1}+D_{2}}{2}\right) \\
& \geq 1+H(0.3)-2 H(0.2)
\end{aligned}
$$

where we have used the fact that $H(p)$ is increasing on $p \in\left[0, \frac{1}{2}\right]$ and concave. The minimum is attained at $D_{1}=D_{2}=0.2$.
(e) By (b) and (c), we have
$R(4)=\min _{D_{1}+D_{2} \leq 4} R_{X}\left(D_{1}\right)+R_{Y}\left(D_{2}\right)=\min _{D_{1}+D_{2} \leq 4} \frac{1}{2} \log \frac{1}{\min \left\{D_{1}, 1\right\}}+\frac{1}{2} \log \frac{4}{\min \left\{D_{2}, 4\right\}}$.
If $D_{1} \leq 1$, by the convexity of $x \mapsto-\log x$ we know that the minimum is achieved at $D_{1}=1, D_{2}=3$. If $D_{1}>1$, we have $D_{2}<3$ and $\log \frac{4}{D_{2}}>\log \frac{4}{3}$. Hence, $\left(D_{1}^{*}, D_{2}^{*}\right)=(1,3)$, and $R(4)=\frac{1}{2} \log \frac{4}{3}$. Note that $R_{X}\left(D_{1}^{*}\right)=0$ in this case, no bit is used to describe X_{1}.
3. Compression with some help (25 points)

Consider the lossless source coding problem in Figure 1. The pair $\left(X^{n}, Y^{n}\right)$ is generated by i.i.d. drawings of the finite alphabet pair (X, Y), that is $p\left(x^{n}, y^{n}\right)=\prod_{i=1}^{n} p_{X Y}\left(x_{i}, y_{i}\right)$. We wish to transmit the source sequence X^{n} near-losslessly when Y^{n} is available at both the encoder and the decoder. Formally, a $\left(2^{n R}, n\right)$ code is defined by an encoder $m\left(x^{n}, y^{n}\right) \in\left\{1,2, \ldots, 2^{n R}\right\}$ and a decoder $\hat{X}^{n}\left(m, y^{n}\right)$, and the probability of decoding error is defined as $P_{e}=P\left\{\hat{X}^{n} \neq X^{n}\right\}$, where $\hat{X}^{n}=\hat{X}^{n}\left(m\left(X^{n}, Y^{n}\right), Y^{n}\right)$. A rate R is achievable if there exists a sequence of codes with $P_{e} \rightarrow 0$ as $n \rightarrow \infty$.

Figure 1: Conditional Lossless Source Coding
(a) Prove that any rate $R>H(X \mid Y)$ is achievable.
[Hint: If $y^{n} \in T_{\delta^{\prime}}^{(n)}(Y)$ and $x^{n} \in T_{\delta}^{(n)}\left(X \mid y^{n}\right)$ for appropriate $\delta^{\prime}<\delta$, transmit the index of x^{n} in $T_{\delta}^{(n)}\left(X \mid y^{n}\right)$.]
(b) Prove that any rate $R<H(X \mid Y)$ is not achievable via the following steps:
i. For $M=m\left(X^{n}, Y^{n}\right)$ argue why

$$
I\left(X^{n} ; M \mid Y^{n}\right) \leq n R
$$

ii. Use the previous step and a relation that you know between conditional entropy and probability of error to deduce that if $R<H(X \mid Y)$ then one cannot get $P_{e} \rightarrow 0$ as $n \rightarrow \infty$.

Now we consider a simple instance of this problem and develop concrete schemes for achieving the optimal rate. Let X be a random variable uniformly distributed on $\{0,1\}^{3}$, i.e., X is a sequence of 3 independent unbiased bits. Let $Y=X \oplus Z$, where Z is independent of X and is uniformly distributed on $\{(0,0,0),(0,0,1),(0,1,0),(1,0,0)\}$ (set of binary triplets with at most one 1).
(c) Give a scheme to losslessly compress X into 2 bits when Y is known at both the encoder and the decoder. Specifically, you should describe the encoder $m(x, y) \in$ $\{1,2,3,4\}$ and a decoder $\hat{X}(m, y)$ which satisfy $\hat{X}(m(X, Y), Y)=X$. Is this optimal?
(d) Now, if only the decoder has access to Y, show that random variable X can still be losslessly compressed using 2 bits.
[Hint: Partition \mathcal{X} into 4 suitable subsets, and transmit the index of the subset.]
(e) In part (d), can we do better (with less) than 2 bits?

Solution:

(a) Fix any $\delta>\delta^{\prime}>0$. By strong AEP, with probability tending to 1 , we have $y^{n} \in$ $T_{\delta^{\prime}}^{(n)}(Y)$ and $x^{n} \in T_{\delta}^{(n)}\left(X \mid y^{n}\right)$. We consider the encoding/decoding scheme as follows:

- Encoding: the compressor sends the index of the sequence x^{n} in $T_{\delta}^{(n)}\left(X \mid y^{n}\right)$ if conditional typicality holds; otherwise, just send 1 ;
- Decoding: find the sequence x^{n} in $T_{\delta}^{(n)}\left(X \mid y^{n}\right)$ with the received index.

Note that this scheme has error probability tending to zero. Moreover, $\left|T_{\delta}^{(n)}\left(X \mid y^{n}\right)\right| \leq$ $2^{n(1+\delta) H(X \mid Y)}$, therefore the rate is at most $R \leq(1+\delta) H(X \mid Y)$. Since $\delta>0$ is arbitrary, any rate $R>H(X \mid Y)$ is achievable.
(b) i. Note that $H(M) \leq n R$ since $M \in\left\{1,2, \cdots, 2^{n R}\right\}$, we have

$$
I\left(X^{n} ; M \mid Y^{n}\right)=H\left(M \mid Y^{n}\right)-H\left(M \mid X^{n}, Y^{n}\right)=H\left(M \mid Y^{n}\right) \leq H(M) \leq n R
$$

ii. Let $p_{e}=\mathbb{P}\left(\hat{X}^{n} \neq X^{n}\right)$, Fano's inequality gives

$$
\begin{aligned}
I\left(X^{n} ; M \mid Y^{n}\right) & =H\left(X^{n} \mid Y^{n}\right)-H\left(X^{n} \mid M, Y^{n}\right) \\
& \geq H\left(X^{n} \mid Y^{n}\right)-H\left(X^{n} \mid \hat{X}^{n}\right) \\
& \geq n H(X \mid Y)-H\left(p_{e}\right)-n p_{e} \log |\mathcal{X}| .
\end{aligned}
$$

Combining with the previous question, we see that

$$
R \geq H(X \mid Y)-\frac{H\left(p_{e}\right)}{n}-p_{e} \log |\mathcal{X}|
$$

i.e., any $R<H(X \mid Y)$ is impossible given $p_{e} \rightarrow 0$.
(c) Since the alphabet of Z has size $|\mathcal{Z}|=4$, there exists a bijection f between \mathcal{Z} and $\{1,2,3,4\}$. Define encoder $m(x, y)=f(x \oplus y)$ and decoder $\hat{X}(m, y)=f^{-1}(m) \oplus y$. This definition is feasible since $X \oplus Y=Z \in \mathcal{Z}$. Clearly $\hat{X}(m(x, y), y)=f^{-1}(f(x \oplus$ $y)) \oplus y=x$, and the rate is $\log |\mathcal{Z}|=2$. This is not improvable, for

$$
H(X \mid Y)=H(X)+H(Y \mid X)-H(Y)=H(X)+H(Z)-H(X \oplus Z)=2
$$

(d) Split $\{0,1\}^{3}$ into four groups: $G_{1}=\{(0,0,0),(1,1,1)\}, G_{2}=\{(1,0,0),(0,1,1)\}, G_{3}=$ $\{(0,1,0),(1,0,1)\}, G_{4}=\{(0,0,1),(1,1,0)\}$. Upon receiving X, the encoder encodes the index of the group which X lies in. The decoder determines \hat{X} to be the closest symbol to the side information Y (in Hamming distance) in the given group. Clearly the rate is 2 , and this is lossless because the symbols in each group have minimum distance 3 and can thus correct 1-bit error caused by Z.
(e) No, because 2 bits are optimal even in the setting of (c), where the encoder also has the extra side information Y.

4. Channel Capacity (15 points)

Find the capacities of the following channels with the given channel transition matrices $p(y \mid x)$. Also, give the capacity-achieving input distribution $p(x)$. Justify your answers. (you can leave the final answers in terms of the binary entropy function)
(a) $\mathcal{X}=\mathcal{Y}=\{0,1,2\}$

$$
p(y \mid x)=\left[\begin{array}{ccc}
0 & 1 / 3 & 2 / 3 \\
2 / 3 & 0 & 1 / 3 \\
1 / 3 & 2 / 3 & 0
\end{array}\right]
$$

(b) $\mathcal{X}=\mathcal{Y}=\{0,1,2\}$

$$
p(y \mid x)=\left[\begin{array}{ccc}
0 & 1 / 3 & 2 / 3 \\
2 / 3 & 0 & 1 / 3 \\
0 & 2 / 3 & 1 / 3
\end{array}\right]
$$

(c) $\mathcal{X}=\{0,1\}, \mathcal{Y}=\{0,1,2\}$

$$
p(y \mid x)=\left[\begin{array}{ccc}
0 & 2 / 3 & 1 / 3 \\
1 / 3 & 2 / 3 & 0
\end{array}\right]
$$

Solution:

(a) For any input distribution $p(x)$, we have

$$
I(X ; Y)=H(Y)-H(Y \mid X)=H(Y)-H\left(\frac{1}{3}\right) \leq \log 3-H\left(\frac{1}{3}\right)
$$

with equality iff Y is uniformly distributed on \mathcal{Y}. Therefore, the capacity-achieving input distribution is $p(x)=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$.
(b) We can show that $I(X ; Y) \leq \log 3-H\left(\frac{1}{3}\right)$ as in (a), with equality iff Y is uniformly distributed on \mathcal{Y}. This gives the capacity-achieving distribution $p(x)=\left(0, \frac{1}{2}, \frac{1}{2}\right)$.
(c) For input distribution $(p, 1-p)$, we have $Y \sim\left(\frac{1-p}{3}, \frac{2}{3}, \frac{p}{3}\right)$, and

$$
\begin{aligned}
I(X ; Y)=H(Y)-H(Y \mid X) & =-\frac{1-p}{3} \log \frac{1-p}{3}-\frac{p}{3} \log \frac{p}{3}-\frac{2}{3} \log \frac{2}{3}-H\left(\frac{1}{3}\right) \\
& \leq 2 \cdot \frac{\log 6}{6}-\frac{2}{3} \log \frac{2}{3}-H\left(\frac{1}{3}\right)=\frac{1}{3}
\end{aligned}
$$

where the inequality follows from the concavity of $x \mapsto-x \log x$. As a result, the capacity-achieving input distribution is $p(x)=\left(\frac{1}{2}, \frac{1}{2}\right)$.
The capacity can also be computed by observing that the channel is a special case of BEC channel (erasure probability $2 / 3$).
5. Information Theory and Statistics (20 points)

This problem illustrates an application of information-theoretic tools in statistics. Suppose we observe a sample $X \sim \mathcal{N}\left(\theta, I_{d}\right)$, where $\theta \in \mathbb{R}^{d}$ is an unknown mean vector, and I_{d} denotes the $d \times d$ identity matrix. An estimator $\hat{\theta}=\hat{\theta}(X)$ is a function of X, and we want to find an estimator $\hat{\theta}$ which is close to the true θ. We consider the mean squared error $l(\theta)=\mathbb{E}_{\theta}\|\hat{\theta}(X)-\theta\|_{2}^{2}$, where the expectation is taken with respect to $X \sim \mathcal{N}\left(\theta, I_{d}\right)$.
(a) A natural estimator is $\hat{\theta}(X)=X$. What is $l(\theta)$ in this case? What is the worst-case $l(\theta)$ when θ can be any value in \mathbb{R}^{d} ?

In the following, we show that this natural estimator is in fact a minimax estimator for estimating θ under mean squared error. By minimax we mean that it achieves the minimum worst-case error possible for any estimator. For this we'll use ideas from channel capacity and rate-distortion. First, we state some results for multivariate Gaussian distributions. These can be derived using similar techniques as those used for univariate Gaussian.

- Capacity of multivariate $A W G N$ channel: Consider a channel from θ to X defined as $X=\theta+Z$ where $Z \sim \mathcal{N}\left(0, I_{d}\right)$ with power constraint $\mathbb{E}\|\theta\|_{2}^{2} \leq d \sigma^{2}$. For this channel,

$$
\begin{equation*}
C=\frac{d}{2} \log \left(1+\sigma^{2}\right) \tag{1}
\end{equation*}
$$

- Rate-distortion function for multivariate Gaussian source: Consider a source $\theta \sim$ $\mathcal{N}\left(0, \sigma^{2} I_{d}\right)$ and distortion metric $d(\theta, \hat{\theta})=\mathbb{E}\|\theta-\hat{\theta}\|_{2}^{2}$. For this setting,

$$
\begin{equation*}
R(D)=\frac{d}{2} \log \frac{d \sigma^{2}}{D} \tag{2}
\end{equation*}
$$

(b) Assume that there exists an estimator $\hat{\theta}$ with $l(\theta) \leq D$ for any $\theta \in \mathbb{R}^{d}$. Argue why that implies that we must have $R(D) \leq C$, where C and $R(D)$ are as defined in equations (1) and (2), respectively.
[Hint: Frame this as a joint source-channel coding problem with appropriate source and channel.]
(c) Conclude from (b) that $D \geq \frac{d \sigma^{2}}{1+\sigma^{2}}$. Since that argument holds for any value of σ^{2}, further conclude that $D \geq d$.
(d) Argue how your results in (b) and (c) imply that the estimator in (a) is a minimax estimator. Specifically, argue why no other estimator can achieve worst-case risk lower than that achieved by $\hat{\theta}(X)=X$.

Solution:

(a) We have $X_{i} \sim \mathcal{N}(\theta, 1)$ for each $i=1,2, \cdots, d$. Hence, $l(\theta)=\sum_{i=1}^{d} \mathbb{E}_{\theta}\left(X_{i}-\theta\right)^{2}=d$. Since $l(\theta)=d$ for any θ, so is the worst-case risk.
(b) Consider the joint source-channel coding problem with source $\theta \sim \mathcal{N}\left(0, \sigma^{2} I_{d}\right)$ and channel $x \mid \theta \sim \mathcal{N}\left(\theta, I_{d}\right)$. The overall rate is 1 , so $R(D) \leq C$ follows from the joint source-channel coding theorem. Alternatively, we can also write

$$
R(D)=\min _{p(\hat{\theta} \mid \theta): \mathbb{E}\|\hat{\theta}-\theta\|_{2}^{2} \leq D} I(\theta ; \hat{\theta}) \leq I(\theta ; \hat{\theta}) \leq I(\theta ; X) \leq \max _{p(\theta): \mathbb{E}\|\theta\|_{2}^{2} \leq d \sigma^{2}} I(\theta ; X)=C
$$

for $\theta-X-\hat{\theta}$ forms a Markov chain.
(c) By (b) we have $\frac{d}{2} \log \frac{d \sigma^{2}}{D} \leq \frac{d}{2} \log \left(1+\sigma^{2}\right)$, which gives $D \geq \frac{d \sigma^{2}}{1+\sigma^{2}}$. This inequality holds for any σ^{2}, we choose $\sigma^{2} \rightarrow \infty$ to conclude that $D \geq d$.
(d) Part (c) shows that the worst-case risk for any estimator must be no smaller than D. Since the natural estimator $\hat{\theta}(X)=X$ achieves the worst-case risk D, we conclude that this estimator is minimax.

