Outline

- Channel coding and capacity
- Polar code construction
- Decoding
- Theoretical analysis
- Extensions
Channel coding

- Entropy

\[H(U) = \mathbb{E}[\log \frac{1}{p(U)}] = - \sum_u p(u) \log p(u) \]
Channel coding

- **Entropy**

\[
H(U) = \mathbb{E} \left[\log \frac{1}{p(U)} \right] = - \sum_u p(u) \log p(u)
\]

- **Conditional Entropy**

\[
H(X|Y) = \mathbb{E} \left[\log \frac{1}{p(X|Y)} \right] = \sum_y p(y) H(X|Y = y)
\]
Channel coding

- **Entropy**

\[
H(U) = \mathbb{E}[\log \frac{1}{p(U)}] = - \sum_u p(u) \log p(u)
\]

- **Conditional Entropy**

\[
H(X|Y) = \mathbb{E}[\log \frac{1}{p(X|Y)}] = \sum_y p(y) H(X|Y = y)
\]

- **Mutual Information**

\[
I(X;Y) = H(X) - H(X|Y)
= H(X) + H(Y) - H(X,Y)
\]
Channel Capacity

- Channel capacity C is the maximal rate of reliable communication over memoryless channel characterized by $P(Y|X)$

- Theorem:

 $$C = \max_{P_X} I(X;Y)$$
Capacity of the binary erasure channel (BEC)

\[
I(X; Y) = H(X) - H(X|Y)
= H(X) - H(X)\epsilon - 0 P(Y = 0) - 0 P(Y = 1)
= (1 - \epsilon)H(X)
\]

Picking \(X \sim Ber(\frac{1}{2}) \), we have \(H(X) = 1 \). Thus, the capacity of BEC is \(C = 1 - \epsilon \)
Channel Coding

\[J \sim \text{uniform} \in \{1, 2, \ldots, M\} \rightarrow \text{encoder} \xrightarrow{X^n} \text{memoryless channel } P_{Y|X} \xrightarrow{Y^n} \text{decoder} \rightarrow \hat{J} \]

\[
\text{rate } \frac{\log M}{n} \text{ bits/channel use} \\
\text{probability of error } P_e = P(\hat{J} \neq J)
\]
Channel Coding

$J \sim \text{uniform} \in \{1, 2, ..., M\} \to \text{encoder} \xrightarrow{X^n} \text{memoryless channel} P_{Y|X} \xrightarrow{Y^n} \text{decoder} \to \hat{J}$

rate $\frac{\log M}{n}$ bits/channel use

probability of error $P_e = P(\hat{J} \neq J)$

- If $R < \max P_x I(X; Y)$, then rate R is achievable, i.e., there exists schemes with rate $\geq R$ and $P_e \to 0$
Channel Coding

\[J \sim \text{uniform } \in \{1, 2, ..., M\} \rightarrow \text{encoder} \xrightarrow{X^n} \text{memoryless channel } P_{Y|X} \xrightarrow{Y^n} \text{decoder} \rightarrow \hat{J} \]

rate \(\frac{\log M}{n} \) bits/channel use

probability of error \(P_e = P(\hat{J} \neq J) \)

- If \(R < \max_{P_X} I(X; Y) \), then rate \(R \) is achievable, i.e., there exists schemes with rate \(\geq R \) and \(P_e \rightarrow 0 \)

- If \(R > \max_{P_X} I(X; Y) \), then \(R \) is not achievable.

Main result: maximum rate of reliable communication
\(C = \max_{P_X} I(X; Y) \)
Today: Polar Codes

- Invented by Erdal Arikan in 2009
- First code with an explicit construction to provably achieve the channel capacity
- Nice structure with efficient encoding/decoding operations
- We will assume that the channel is symmetric, i.e., uniform input distribution achieves capacity
Basic 2×2 transformation

$U_1, U_2, X_1, X_2 \in \{0, 1\}$ binary variables (in GF(2))
Basic 2×2 transformation

$U_1, U_2, X_1, X_2 \in \{0, 1\}$ binary variables (in GF(2))

\[
\begin{bmatrix}
X_1 \\
X_2
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
0 & 1
\end{bmatrix} \begin{bmatrix}
U_1 \\
U_2
\end{bmatrix} \mod 2
\]

or equivalently $X_1 = U_1 \oplus U_2$ and $X_2 = U_2$
Properties of G_2

\[U = \begin{bmatrix} U_1 \\ U_2 \end{bmatrix} \quad X = \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} \]

Define \(G_2 := \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \) then we have \(X = G_2U \)

\[G_2^2 := G_2G_2 \]
Properties of G_2

\[
U = \begin{bmatrix} U_1 \\ U_2 \end{bmatrix} \quad X = \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}
\]

Define $G_2 := \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ then we have $X = G_2 U$

$G_2^2 := G_2 G_2$

\[
G_2 G_2 U = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} U_1 \\ U_2 \end{bmatrix}
\]
Properties of G_2^2

Define $G_2 := \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ then we have $X = G_2U$

$G_2^2 := G_2G_2$

$G_2G_2U = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} U_1 \\ U_2 \end{bmatrix}$

$= \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} U_1 \oplus U_2 \\ U_2 \end{bmatrix}$
Erasure channel

Assume that the channel has "input-output symmetry."

Examples:

\[
\begin{array}{c}
1 - \epsilon \\
1 - \epsilon \\
\epsilon \\
\epsilon \\
1 \\
0 \\
1 \\
0
\end{array}
\]

BEC(\(\epsilon\))
Naively combining erasure channels

Assume that the channel has "input-output symmetry."

Examples:

\[U_1 \rightarrow (Y_1, Y_2, U_1) \]

Repetition coding
Combining two erasure channels

$W^2: U_2 \rightarrow (Y_1, Y_2, U_1) + U_2 U_1 W W^T Y_2 Y_1$

Invertible transformation does not alter capacity:
$I(U; Y) = I(X; Y)$
Sequential decoding

First bit-channel $W_1 : U_1 \rightarrow (Y_1, Y_2)$

\[C(W_1) = I(U_1; Y_1, Y_2) \]
Second bit-channel $W_2 : U_2 \rightarrow (Y_1, Y_2, U_1)$
Capacity is conserved

\[C(W_1) + C(W_2) = C(W) + C(W) = 2C(W) \]

\[C(W_1) \leq C(W) \leq C(W_2) \]
Polarization process

\[2\epsilon - \epsilon^2 \quad \rightarrow \quad 2(2\epsilon - \epsilon^2) - (2\epsilon - \epsilon^2)^2 \]

\[\epsilon \quad \rightarrow \quad (2\epsilon - \epsilon^2)^2 \]

\[\epsilon^2 \quad \rightarrow \quad 2(\epsilon^2) - (\epsilon^2)^2 \]

\[(\epsilon^2)^2 \]
Let e_t be i.i.d. uniform ± 1 for $t = 1, 2...$

$$w_{t+1} = w_t + e_t w_t (1 - w_t)$$
A familiar update rule

Let e_t be i.i.d. uniform ± 1 for $t = 1, 2, \ldots$

$$w_{t+1} = w_t + e_t w_t (1 - w_t)$$
Martingales

Let e_t be i.i.d. uniform ±1 for $t = 1, 2...$

$$w_{t+1} = w_t + e_t w_t (1 - w_t)$$

$$\mathbb{E}[w_{t+1} | w_t] = w_t$$
Martingales

Let e_t be i.i.d. uniform ± 1 for $t = 1, 2, \ldots$

$$w_{t+1} = w_t + e_t w_t (1 - w_t)$$

$$\mathbb{E}[w_{t+1} | w_t] = w_t$$

- Doob’s Martingale convergence theorem
 (informal) Bounded Martingale processes converge to a limiting random variable w_∞ such that $\mathbb{E}[|w_t - w_\infty|] \to 0$.
Non-convergent paths

- Down - Up - Down - Up

\[\epsilon \downarrow \epsilon^2 \uparrow 2\epsilon^2 - \epsilon^4 \equiv? \epsilon \]
Non-convergent paths

- Down - Up - Down - Up

\[\epsilon \downarrow \epsilon^2 \uparrow 2\epsilon^2 - \epsilon^4 = \epsilon \text{ if } \epsilon = \frac{\sqrt{5}}{2} - \frac{1}{2} = \frac{1}{\phi} \approx 0.61803398875 \]
Non-convergent paths

- Down - Up - Down - Up

\[\varepsilon \downarrow \varepsilon^2 \uparrow 2\varepsilon^2 - \varepsilon^4 = \varepsilon \text{ if } \varepsilon = \frac{\sqrt{5}}{2} - \frac{1}{2} = \frac{1}{\phi} \approx 0.61803398875 \]

Golden ratio: \(\phi := \frac{1 + \sqrt{5}}{2} \approx 1.61803398875 \)
Non-convergent paths

Down - Up - Down - Up

$\epsilon \downarrow \epsilon^2 \uparrow 2\epsilon^2 - \epsilon^4 = \epsilon$ if $\epsilon = \frac{\sqrt{5}}{2} - \frac{1}{2} = \frac{1}{\phi} \approx 0.61803398875$

Golden ratio: $\phi := \frac{1 + \sqrt{5}}{2} \approx 1.61803398875$
Google images: golden ratio in nature
Polarization theorem

Theorem

The bit-channel capacities \(\{ C(W_i) \} \) polarize: for any \(\delta \in (0, 1) \), as the construction size \(N \) grows

\[
\left[\frac{\text{no. channels with } C(W_i) > 1 - \delta}{N} \right] \to C(W)
\]

and

\[
\left[\frac{\text{no. channels with } C(W_i) < \delta}{N} \right] \to 1 - C(W)
\]
Freezing noisy channels

<table>
<thead>
<tr>
<th>$I(W_i)$</th>
<th>Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0039</td>
<td>8</td>
</tr>
<tr>
<td>0.1211</td>
<td>7</td>
</tr>
<tr>
<td>0.1914</td>
<td>6</td>
</tr>
<tr>
<td>0.6836</td>
<td>4</td>
</tr>
<tr>
<td>0.3164</td>
<td>5</td>
</tr>
<tr>
<td>0.8086</td>
<td>3</td>
</tr>
<tr>
<td>0.8789</td>
<td>2</td>
</tr>
<tr>
<td>0.9961</td>
<td>1</td>
</tr>
</tbody>
</table>
Freezing noisy channels

<table>
<thead>
<tr>
<th>$I(W_i)$</th>
<th>Rank</th>
<th>Type</th>
<th>(U_i)</th>
<th>(Y_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0039</td>
<td>8</td>
<td>frozen</td>
<td>(U_1)</td>
<td>(W)</td>
</tr>
<tr>
<td>0.1211</td>
<td>7</td>
<td>frozen</td>
<td>(U_2)</td>
<td>(W)</td>
</tr>
<tr>
<td>0.1914</td>
<td>6</td>
<td>frozen</td>
<td>(U_3)</td>
<td>(W)</td>
</tr>
<tr>
<td>0.6836</td>
<td>4</td>
<td>data</td>
<td>(U_4)</td>
<td>(W)</td>
</tr>
<tr>
<td>0.3164</td>
<td>5</td>
<td>frozen</td>
<td>(U_5)</td>
<td>(W)</td>
</tr>
<tr>
<td>0.8086</td>
<td>3</td>
<td>data</td>
<td>(U_6)</td>
<td>(W)</td>
</tr>
<tr>
<td>0.8789</td>
<td>2</td>
<td>data</td>
<td>(U_7)</td>
<td>(W)</td>
</tr>
<tr>
<td>0.9961</td>
<td>1</td>
<td>data</td>
<td>(U_8)</td>
<td>(W)</td>
</tr>
</tbody>
</table>
Freezing noisy channels

\[I(W_i) \quad \text{Rank} \]

<table>
<thead>
<tr>
<th>(I(W_i))</th>
<th>Rank</th>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0039</td>
<td>8</td>
<td>frozen</td>
</tr>
<tr>
<td>0.1211</td>
<td>7</td>
<td>frozen</td>
</tr>
<tr>
<td>0.1914</td>
<td>6</td>
<td>frozen</td>
</tr>
<tr>
<td>0.6836</td>
<td>4</td>
<td>data (U_4)</td>
</tr>
<tr>
<td>0.3164</td>
<td>5</td>
<td>frozen</td>
</tr>
<tr>
<td>0.8086</td>
<td>3</td>
<td>data (U_6)</td>
</tr>
<tr>
<td>0.8789</td>
<td>2</td>
<td>data (U_7)</td>
</tr>
<tr>
<td>0.9961</td>
<td>1</td>
<td>data (U_8)</td>
</tr>
</tbody>
</table>
Polarization of general channels

\[W^-(Y_1, Y_2|U_1) = \frac{1}{2} \sum_{u_2} W_1(y_1|u_1 \oplus u_2)W_2(y_2|u_2) \]

\[W^+(Y_1, Y_2, U_1|U_2) = \frac{1}{2} W_1(y_1|u_1 + u_2)W_2(y_2|u_2) \]
Polarization of general channels

\[
W^-(Y_1, Y_2 | U_1) = \frac{1}{2} \sum_{u_2} W_1(y_1 | u_1 \oplus u_2)W_2(y_2 | u_2)
\]

\[
W^+(Y_1, Y_2, U_1 | U_2) = \frac{1}{2} W_1(y_1 | u_1 + u_2)W_2(y_2 | u_2)
\]

\[
I(W^-) + I(W^+) = I(W) + I(W) = 2I(W)
\]
Polarization of general channels

\[
W^-(Y_1, Y_2|U_1) = \frac{1}{2} \sum_{u_2} W_1(y_1|u_1 \oplus u_2)W_2(y_2|u_2)
\]

\[
W^+(Y_1, Y_2, U_1|U_2) = \frac{1}{2} W_1(y_1|u_1 + u_2)W_2(y_2|u_2)
\]

\[
I(W^-) + I(W^+) = I(W) + I(W) = 2I(W)
\]

Mrs Gerber’s Lemma: If \(I(W) = 1 - \mathcal{H}(p)\), then
\[
I(W^+) - I(W^-) \geq 2\mathcal{H}(2p(1-p)) - \mathcal{H}(p)
\]
General Polar Construction

Original channels (uniform)

[Diagram showing connections from original channels to a central vector channel and then to new polarized channels.]

New channels (polarized)

Combine \rightarrow Split
General Polar Construction

- Begin with N copies of W,
- use a 1-1 mapping

$$G_N : \{0, 1\}^N \rightarrow \{0, 1\}^N$$

- to create a vector channel

$$W_{vec} : U^N \rightarrow Y^N$$
General Polar Construction

Splitting

\[C(W_{\text{vec}}) = I(U^N; Y^N) \]
\[= \sum_{i=1}^{N} I(U_i; Y^N, U^{i-1}) \]
\[= \sum_{i=1}^{N} C(W_i) \]

Define bit-channels

\[W_i : U_i \rightarrow (Y^N, U^{i-1}) \]
Successive Cancellation Decoder
Successive Cancellation Decoder

First phase: treat a as noise, decode (u_1, u_2, u_3, u_4)
Successive Cancellation Decoder

End of first phase
Successive Cancellation Decoder

Second phase: Treat \hat{b} as known, decode (u_5, u_6, u_7, u_8)
Successive Cancellation Decoder

First phase in detail
Successive Cancellation Decoder

Equivalent channel model

\[b_1, b_2, b_3, b_4, \text{noise } a_1, \text{noise } a_2, \text{noise } a_3, \text{noise } a_4 \]
Successive Cancellation Decoder

First copy of W^-
Successive Cancellation Decoder

Second copy of W^\neg
Successive Cancellation Decoder

Third copy of W^-
Successive Cancellation Decoder

Fourth copy of W^-
Successive Cancellation Decoder

Decoding on W^{---}

Compute

$$L^{---} \triangleq \frac{W^{---}(y_1, \ldots, y_8 \mid u_1 = 0)}{W^{---}(y_1, \ldots, y_8 \mid u_1 = 1)}.$$

Set

$$\hat{u}_1 = \begin{cases}
 u_1 & \text{if } u_1 \text{ is frozen} \\
 0 & \text{else if } L^{---} > 0 \\
 1 & \text{else}
\end{cases}$$
Successive Cancellation Decoder

Decoding on W^{*-+}

Known \hat{u}_1

u_2

$W^{--}(y_1, y_3, y_5, y_7)$

$W^{--}(y_2, y_4, y_6, y_8)$
Successive Cancellation Decoder

Decoding on $W^{--;+}$

Compute

$$L^{--;+} \triangleq \frac{W^{--;+}(y_1, \ldots, y_8, \hat{u}_1 | u_2 = 0)}{W^{--;+}(y_1, \ldots, y_8, \hat{u}_1 | u_2 = 1)}.$$

Set

$$\hat{u}_2 = \begin{cases}
 u_2 & \text{if } u_2 \text{ is frozen} \\
 0 & \text{else if } L^{--;+} > 0 \\
 1 & \text{else}
\end{cases}$$
Theorem

For any rate $R < I(W)$ and block-length N, the probability of frame error for polar codes under successive cancelation decoding is bounded as

$$P_e(N, R) = o\left(2^{-\sqrt{N} + o(\sqrt{N})}\right)$$
Improved decoders

- List decoder (Tal and Vardy, 2011)

 First produce L candidate decisions
 Pick the most likely word from the list
 Complexity $O(LN \log N)$
Tal-Vardy list decoder performance
Length $n = 2048$, rate $R = 0.5$, BPSK-AWGN channel, list-size L.

![Graph showing bit error rate vs. signal-to-noise ratio for different list sizes L.]

- $L = 1$
- $L = 2$
- $L = 4$
- $L = 8$
- $L = 16$
- $L = 32$
- ML bound
Summary

Given W, $N = 2^n$, and $R < I(W)$, a polar code can be constructed such that it has

- construction complexity $O(N \text{poly}(\log(N)))$,
- encoding complexity $\approx N \log N$,
- successive-cancellation decoding complexity $\approx N \log N$,
- frame error probability $P_e(N, R) = o \left(2^{-\sqrt{N} + o(\sqrt{N})} \right)$.
5G Communications

- The jump from 4G to 5G is far larger than any previous jumps—from 2G to 3G; 3G to 4G
- The global 5G market is expected reach a value of 251 Bn by 2025

In 2016, 27 Gbps downlink speed was reached using Polar Codes!

Current LTE download speed is 5-12 Mbps

In November 2016, 3GPP agreed to adopt Polar codes for control channels in 5G. LDPC codes will also be used in data channels.
5G Communications

- The jump from 4G to 5G is far larger than any previous jumps—from 2G to 3G; 3G to 4G
- The global 5G market is expected reach a value of 251 Bn by 2025
- In 2016, 27 Gbps downlink speed was reached using Polar Codes!
- Current LTE download speed is 5-12 Mbps
5G Communications

- The jump from 4G to 5G is far larger than any previous jumps—from 2G to 3G; 3G to 4G
- The global 5G market is expected to reach a value of 251 Bn by 2025
- In 2016, 27 Gbps downlink speed was reached using Polar Codes!
- Current LTE download speed is 5-12 Mbps
- In November 2016, 3GPP agreed to adopt Polar codes for control channels in 5G. LDPC codes will also be used in data channels.
References

- E. Arikan, Polar Coding Tutorial, Simons Institute, UC Berkeley, 2015
- B.C. Geiger, The Fractality of Polar and Reed–Muller Codes, Entropy, 2018