
EE378B Inference, Estimation, and Information Processing

Spectral clustering and stochastic block model
Andrea Montanari Lecture 3 - Due on 1/25/2021

Homework should be submitted via Gradescope, by Monday afternoon: the code will be communicated
by an announcement on Canvas. This homework requires some

For getting credit for the class, you are required to present solutions of some of these homeworks during
the first 15 minutes of class starting on 1/20. Please, sign up for (at least) one slot, and be sure that your
explanation lasts 15 minutes (or less). For these presentations, you are free to choose whatever format you
prefer (slides, typed notes, handwriting, . . . ).

This week, the presentations will be:

• Monday 1/25: Questions (a), (b), (c)

• Wednesday 1/27: Problem 2, points (d), (e), (f).

Spectral clustering

Given a graph G = (V = [n], E), let AG be its adjacency matrix, dG = AG1 the vector of degrees and

d̂ = 〈dG,1〉/n denote its average degree. Also, denote by DG = diag(dG) be the diagonal matrix containing
the degrees.

Spectral clustering is a general approach to generate a partition of V in k clusters. It has many variants
and possible implementations, but at high level it proceeds as follows.

Spectral clustering

Input : Data G, number of clusters k
Output : Vertex labels σ̂ = (σ̂1, . . . , σ̂n), σ̂i ∈ {1, . . . , k}
1: Construct matrix MG ∈ Rn×n from AG;
2: Compute the top (k − 1) eigenvectors v1(MG), . . . , vk−1(MG);
3: Let xi ∈ Rk−1 the i-th row of the matrix V ∈ Rn×(k−1) whose i-th column is vi(MG);
4: Cluster points {xi}i∈[n] into k groups, assigning labels σ̂i ∈ {1, . . . , k};
5: Return vector σ̂ = (σ̂1, . . . , σ̂n)

Step 1 (construction of the matrix MG) and step 4 (clustering of points x1, . . . ,xn ∈ Rk−1) admit several
concrete implementation. We will consider a few of them.

• We will consider two specific choices for the matrix MG at step 1:

1. The centered adjacency matrix MG = Acen

G , where

Acen

G = AG −
d̂

n
11T . (1)

2. The normalized (subtracted) Laplacian. Letting zG = d
1/2
G /

√
nd̂ (where d

1/2
G is the vector of

square roots of degrees), we let MG = LG, where

LG = D
−1/2
G AGD

−1/2
G − zGzTG . (2)

(We will study some interesting properties of the graph Laplacian later in the class.)

• We will consider two possibilities for the clustering step 4:
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1. For k = 2, the points x1, . . . , xn generate at step 3 are real numbers. We partition them by
thresholding at 0:

σ̂i =

{
1 if xi ≥ 0,

2 if xi < 0,
(3)

2. For general k, we can cluster points x1,x2, . . . ,xn using the k-means algorithm. (You can read
about it and implement it, or read about it and use an available implementation.)

We will test spectral clustering in two different settings: (i) Synthetic data generated according to the
stochastic block model; (ii) A real data set concerning political blogs.

In both cases, if σ denotes the true vertex labels, we will evaluate a proposed clustering σ̂ using the
overlap

Q(σ, σ̂) ≡ k

k − 1
max
π∈Sk

{
1

n

n∑
i=1

1{π(σ̂i)=σi} −
1

k

}
(4)

Here π : [k] → [k] is a permutation of the vertex labels 1, . . . , k and accounts for the fact that labels are
arbitrary. Sk is the set for all such permutations. Note that Q ∈ [0, 1] with Q ≈ 1 corresponding to nearly
perfect clustering, and Q ≈ 0 to random clusters.

Stochastic block model

Recall that a graph from the two-groups symmetric block model G = (V,E) ∼ G(n, a/n, b/n) has vertices
V = [n] and is generated as follows. Attribute to each vertex i ∈ [n] a true label σi ∈ {+1,−1} uniformly at
random. Conditional on these labels, add edges independently with probabilities

P
{

(i, j) ∈ E
∣∣σ} =

{
a/n if σi = σj ,

b/n if σi 6= σj .
(5)

(a) Generate random graphs from the stochastic block model with n = 10, 000, b = 10 and each of
a ∈ {10, 15, 20, 25, 30}. In each case, plot the histogram of eigenvalues of the centered adjacency
matrix Acen

G , along with the largest eigenvalue.

(b) Generate 20 random graphs for each of the choices of parameters at the previous point (hence a total of
100 instances). Apply the spectral clustering algorithm described in the previous section, with k = 2,
MG = Acen

G the centered adjacency matrix, and using Eq. (3) to produce the vertex labels.

Report the empirical overlap for each choice of the parameters (n, a, b), averaged over the 20 samples.

(c) Compare your results with the theory we studied in class.

A real dataset

We will study a political blogs dataset first compiled for the paper

Lada A. Adamic and Natalie Glance, The political blogosphere and the 2004 US Election, in
Proceedings of the WWW-2005 Workshop on the Weblogging Ecosystem (2005)

The dataset polblogs contains a graph with n = 1490 vertices (‘nodes’) corresponding to political blogs. Each
vertex has a 0 − −1 label (indicated as ‘value’) corresponding to the political orientation of that blog. We
will consider this as the true label σi and try to reconstruct the vector σ from the graph using the spectral
clustering approach introduced above.

For each of the implementations given below, report the resulting overlap Q(σ, σ̂):
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(d) Use Spectral Clustering with MG = Acen

G the centered adjacency matrix and using simple thresh-
olding (as in Eq. (3)) to produce the clusters.

(e) Repeat the experiment at the previous point, but replacing the centered adjacency matrix with the
normalized Laplacian LG.

(f) As in the previous point, we use the Laplacian matrix LG. However, here we assume that the number
of clusters in G is estimated to be k = 3, and hence we use the top 2 principal components v1(LG),
v2(LG). Produce a scatterplot of the datapoints x1, . . . ,xn ∈ R2 produced at step 3 of the algorithm
(it is useful to color-code them, using the true labels).

Use k-Means (with k = 3) to cluster the datapoints x1, . . . ,xn. How would you evaluate the resulting
clustering?
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