
EE378B Inference, Estimation, and Information Processing

Non-negative Matrix Factorization
Andrea Montanari Lecture 15-16 - Due on 3/15/2021

Homework should be submitted via Gradescope, by Monday afternoon (unless Monday is a holiday): the
code will be communicated by an announcement on Canvas.

For getting credit for the class, you are required to present solutions of some of these homeworks during
the first 15 minutes of class starting on 1/20. Please, sign up for (at least) one slot, and be sure that your
explanation lasts 15 minutes (or less). For these presentations, you are free to choose whatever format you
prefer (slides, typed notes, handwriting, . . . ).

This week, the presentations will be:

• Monday: Questions (a), (b)

• Wednesday: Questions (c), (d).

This homework is about dimensionality reduction using non-negative matrix factorization. Part of this
homework will use the MNIST test dataset in the file mnist test.csv that you can find at the following url

http://web.stanford.edu/class/ee378b/homework/mnist test.csv

The data consist of n = 10, 000 images. An image is a 28 × 28 gray-level array. Each image is stored as a
line of the file mnist test.csv, in the format

label, pix(1,1), pix(1,2), pix(1,3), . . . ,

where label is a label corresponding to the digit represented by the image, and pix(s,t) is the pixel intensity
at row s, column t (an integer in the range {0, 1, . . . , 255}).

Hereafter, we will denote the i-th image by the vector xi ∈ Rd, d = 282 = 784.
We will compare two approaches:

Principal component analysis (PCA). Given data x1, . . . ,xn, this computes the empirical covariance
Σ ∈ Rd×d via

Σ ≡ 1

n
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xix
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and let Û r ∈ Rd×r be the matrix whose columns are given by the first r eigenvector of Σ (corresponding
to the largest eigenvalues).

Non-negative matrix factorization (NMF). Represent the data by a matrix X ∈ Rn×d, whose i-th
row is the vector xi. We suggest to rescale the rows so that X1 = 1 and implement the original
algorithm in (Seung, Lee, 1999) which attempts at maximizing the following cost over W ∈ Rn×r and
H ∈ Rr×d

F (W ,H) =

n∑
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d∑
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{
Xij log(WH)ij − (WH)ij

}
. (2)
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The algorithm proceeds according to the following iteration
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We denote by Ĥr the output of this iteration. We leave it up to you to decide on a reasonable
initialization and convergence criterion, as long as you describe your choices.

(a) We first consider the behavior of the two algorithms in a synthetic data model. For d = 200 generate
θ ∈ {0, 1}d with half of its entries equal to 1, and half equal to 0, and w ∈ Rn, with i.i.d. entries wi ∼
Unif([0, 1]). Then for i ∈ {1, . . . , n}, j ∈ {1, . . . , d}, generate

Xij ∼
√
d · Bernoulli

( 1√
d
wiθj

)
, (7)

with (Xij)i≤n,j≤d conditionally independent given θ,w. The vectors xi are the rows of matrix X =
(Xij)i≤n,j≤d.

Use PCA with r = 1 to get an estimate Û1 = û1 ∈ Rd. We evaluate this approach by estimating the
similarity

Qn = E
{ |〈û1,θ〉|
‖û1‖2‖θ‖2

}
. (8)

Repeat this experiment for n ∈ {200, 400, 800, 1600, 3200}, and estimate Qn at each value of n by averaging
over 10 realization of the matrix X.

(b) Repeat the same experiment as in point (a), but using NMF instead of PCA. Compare the results with
the ones of PCA.

(c) We now switch to the MNIST data. In this case, as mentioned above, d = 784 = 282 and n = 10, 000.

Set r = 6, anf compute Û r. Plot the r principal components (columns of Û) as 28×28 pixels images. (Scale
them as to make them visible!)

(d) Repeat the analysis at the previous point using NMF. Plot the resulting archetypes (hi)i≤r (the rows

of Ĥr) as 28× 28 pixels images. (Scale them as to make them visible!) Compare the results with the ones
of PCA.
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