EE378B Homework 1 Solution

Due to: Chen Cheng

1 Problem 1
1.1 Part (a)

First we show
max {[|Mz|2 : |z]lz = 1} = max {(x, My) : |[z|2 = [ly[l2 = 1}. (1)

In fact the two sides are well defined since the space of ||z| = 1, ||ly|| = 1 is compact, the supremum can be
attained by a maximal point. On that space by Cauchy-Schwarz

(z, My) < |z|2[Myl]2 = | My, (2)
one has LHS > RHS. On the other hand

My

[Myllz = (s
| Myl

My) < max {(z, My) : ||lz|l2 = [yl2 =1}, 3)

which implies LHS < RHS. Putting together completes the proof for the first part. Next we only have to
show

o1(M) = max {(z, My) : [[z]2 = [|y[l2 = 1}. (4)
Recall the SVD of M € R™*™
M:Zmuiv;—, r<mAn, op>09>--->0.>0, (5)
=1
where U = [uq1, -+ ,u,] € R™*" and V = [vy, -+ ,v,] € R™*" are orthonormal. On the one hand, we have
o1(M) = u{ Mv, = (u1, Mvy) < max {{z, My) : ||z[2 = [ly]> = 1} . (6)

On the other hand, for any two normalized vectors  and y, we can deduce by Cauchy-Schwarz that

(@, My) =Y oi(@, w)(y,v;) <or, | Y (@,w)? D (y,v:)? = 01| Puallal| Prylla < o1||@ll2][y]l2 < o1(M).
i=1 i=1 i=1
(7)

where Py, Py are projections onto subspaces U and V. Taken collectively, the proof is complete.
1.2 Part (b)
Given the SVD of M, we can directly write out the SVD of M " as

]\4T = Z O'i'l)iu;-r, (8)

i=1



and by the result shown in part (a), we see that | M|, = 01 (M) =01 =01 (M ") = ||[M " ||op. Secondly,

|AB]lop = max {| AB|s : [lz]> = 1}
— 0V max{|ABa|s : |l2]2 = 1, | Bx||; # 0}

|ABz|.
ovinax { L2 Baly ol = 1, Boa £ 0
1Bal,
|AByl;
SOVmw{-HBﬂbwwm=1wBMb#0
1Byl
<0V (max {|Az]s : [|2]}> = 1, 2 = By} - max {|Balls : []2 = 1})
< 11 Alop | Bllop: (0)
where the convention max (@) = —oo is used.

1.3 Part (c)
(i) Note that for any «, |[aMz|2 = |a|||Mx||2. By the first definition of operator norm, we get

laMlop = |af[[M|op- (10)

(ii) Again we use the first definition, and deduce that

A+ Bllop = max {[[(A + B)z|z : [z]2 =1}

max {[|Az|z + [ B[ : =2 =1}

max {[|Az|z + [[Bz|2 : |22 =1}

max {[|Az[|s + [ Bylz : [2]2 = lyl2 = 1}
max {[| Azl : |||z = 1} + max {[|Byl| : [|y[l2 = 1}

< [|Allop + | Bllop- (11)

INIA

(iii) Finally, we invoke the maximum singular value definition. Since || M ||, = 01(M) = 0, one must have

M = Zoiuiv;r =0. (12)
i=1



2 Problem 2

2.1 Part (a)

Let U = [uy,--- ,u;] € R"**. For any other orthonormal basis of W, we can denote it by U’ = UO, where
O € R¥*¥ is an orthogonal matrix. Then

k
Z(uj,Auj> = tr [uiTAu]]1<”<k =tr (UTAU) =tr (UTAUOO")

k
= (u), Au), (13)

where we use the fact that OOT = I and tr(AB) = tr(BA) for all A € R™*" B € R"*™. Thus the
definition of tr( Ay ) doesn’t depend on the choice of orthonormal basis.

2.2 Part (b)
Since
dim (W NnV;) =1={aul|||uila =1, € R,u; € V1}, (14)

we can choose a orthonormal basis of W with the first vector exactly being u;. Let the complete basis be
{uy, -+ ,uy}. Define

W =uy® - O uy, (15)
we show that W’ € Sp_1 (Va,---, Vi). In fact since uy L W/, for all 1 < j <k,

dim(W' NV;) = dim(u; & (W' NV;)) —
=dim((uy @ W)NV;) -1
=dim(WnNV;) -
=Jj—-1 (16)

where in the second line we use the fact u; € V;. Next we show the desired inequality, now it’s clear that
k
tr(Alw) Z u;, Au;)
j=1

= (uy, Auy) +Z<uj»Auj>

=2
= <’LL1, Au1> + tr(A|W/)
> >\z1(A) —|—tI‘(A|W/), (17)

while the final line follows from u; € Vi = u; = Z?Zl(ul, v)vy, and thus
il il

(uy, Aur) =Y (ur, o)’ M(A) > X, (A) D (u,o)” = A, (A). (18)

=1 =1



2.3 Part (c)

Let Wy := W, we prove by induction that there exists W; € Sk_;j(Vjt+1,---, Vi) (in particular, Wy = 0)
such that

tr(A|W0) 2 /\11(A)++)‘ZJ(A)+tr(A|WJ)a V1 <j< k. (19)
By part (b) we see that the induction hypothesis holds for 7 = 1. Suppose it’s true for some j < k. We

invoke part (b) for W; € Sk—;(Vj41,---, V). Then there must be some Wj 1 € Sp—j_1(Vj42,---, Vi) such
that

tr(A|Wj) > )‘i]’+1 (A) + tr(*'4|‘/VJ'+1)' (20)

The conclusion also holds for j + 1. The proof is complete by induction and using Wy, = 0. Finally by
definition, we thus have for this special choice of (V7,---,Vy),

R(Ajiy, -, ig) > inf tr(Alw) > i, (A) + -+ X\, (A). (21)

T WeSKk(Vi,, Vi)

2.4 Part (d)

We use the same notations vy, -, v, in part (b) for A’s eigenvectors. We construct W in the following
way. Let Uy := span(v;,, - ,v,), then dim(Uy) = n — 4y + 1, while dim(V;) = 41, thus

dim(Vy NUy) > 1, (22)
we can choose some u; € V4 N U; of unit norm. Then we can simply choose normalized vectors u; €
Vi\Vj_1,u; L V;_y for j = 2,--- ,k by Gram-Schmidt orthogonalization since V;\V;_1 # 0. Let W =
span(uy,--- ,ug) and W' = span(us,--- ,ux). Clearly since wuq,--- ,u; are orthonormal, and for any 1 <
JSka Up, -, Uy e‘/_ﬁ Wjt1, Uk J—Vﬂ one has

dim(W NV;) = dim(span(u1, - -- ,u;)) = j. (23)

Following the same argument, one can easily check dim(W’' NV;) =j —1 for all 1 < j < k. Therefore
tr(Alw) = (u1, Auy) + tr(Alw) < Ai, (A) + tr(Alw), (24)

where the inequality follows from u; € Uy, and

(w, Auy) =Y (ur,0)*N(A) € X (A) Y (ur, ) = i, (A). (25)
=1 =1
2.5 Part (e) - Optional

We can construct the chain of W =: Wy D Wy --- D Wy = () from below by induction. First of all, we want
to construct a perturbed orthonormal basis of R™, such that

[gla"' agn] :ZG:VO, HO_IHmax<€7

where V is the eigenvector matrix of A and O is orthogonal. We define U; := span(g;,,--- ,g,) for 1 < j <k.
We claim there exists a G for any € > 0 such that

UynViy =0, Vj=23,-,k (26)

Lemma 1. For 1< j <k and any W; € Si—;(Vj11,---, Vi) that takes the form W; = span(wjt1,--- , Up)
where the n orthonormal basis wjyq1, -+ ,ur satisfy w; € Uy for j+1 <1 < k, there exists a W1 €
Sk—j+1(Vj, -+, Vi) such that W;_, = span(u;,--- ,u,) = span(u;, W;) where u; € U;.



Proof. Since dim(U;) = n —1i; + 1 and dim(V;) = i;, thus

dim(V; NU;) > 1 (27)

and we can choose some u; € V;NU; of unit norm. For any j+1 <[ < k, since u; € W, and W;NV; C U1 N

V; = 0, we know a; is linearly independent of w;jiq,--- ,ui. Therefore, by setting W;_; = span(a;, W;),
we have

dim(W;—1 NV;) = dim((W; +a;) N V) =dim(W; N V) +1 = j, Vi <1l<k, (29)

where the second line comes form w; ¢ W; and u; € V; C V;. Therefore W;_1 € Sp—j1(Vj, -+, Vi).

Finally, we take u; by Gram-Schmidt orthogonalization

ws — u; — Z?:j+1<'ajvul>ul (30)
i =T - .
o~ ]

Note that w; € Uj,u; € Uy C Uj for all j +1 <1 < n, one must have u; € U;. The proof of the lemma is

complete. 0
Therefore, by iteratively invoking the lemma starting from Wj := (), we can construct a sequence of
subspace W; € Si—;(Vit1,-- -, Vi) where W := Wy has an orthonormal basis uq, - - - , uy such that u; € Uj.
Note that
(uj, Au;) < max (z, Ax). (31)
lzll2=1,z€U;

Clearly for any 6 > 0, we can always choose € > 0 small enough such that

(uj, Auj) < (allaet max( )(:c,Aa:) +0 <A (A) + 9, V1<j<k, (32)
x||2=1,zEspan Vi Un
since
hn(l)[glja 7g’ﬂ]_>['ulja 71]71]7 V1§j§k (33)
€E—>
Therefore
k k
tr(Alw) = > (uj, Au;) < Z A) + k. (34)
Jj=1 Jj=1

Note that 0 can be arbitrarily small, we thus can conclude

k
inf r(A < 35
wes. By AW £ 2% (4 (3)

We only need to prove for any € > 0, G exists such that
U;NV_y =0, Vj=2,3,-- k. (36)

In fact for any 2 < j < k, dim(V;_1) < n — 1. Under the basis vy, - ,v,, V;_1 is a lower dimensional
hyperplane inside R®. While U; has an induced Haar measure from the orthogonal transform O. The Haar
measure is uniform and therefore the measure of its intersection with a fixed lower dimensional hyperplane
being nonempty is 0. Hence such G must exists since ||O — I'||max < € has positive Haar measure.



3 Problem 3

We first show for any subspace W of dimension k,

tr(Blw) < A (B) 4+ -+ A\ (B). (37)
Suppose the i-th normalized eigenvector of B is z;, let U = [uy, - - - ,ux] € R"** be an orthonormal basis of
W. Let Z = [z, ,z,] € R"™™. Note that
B =) X\(B)zz (38)
i=1
Then
k k n n k
tI‘(B‘W) :Z(uj,Buj> :Z )\i(B)<’U,j,Zi>2 = Z)\i(B)ZCij, (39)
j=1 j=11i=1 i=1 j=1
where ¢;; = (z;, u;)? and
k n k n k
OSpiZZZCiJ‘SL Zpizzzcijzzlzk' (40)
Jj=1 i=1 j=1i=1 j=1
Thus given A\ (B) > --- > A\, (B) and at most k steps of greedy algorithm, we can show
tr(Blw) = > Xi(B)pi < > _ Ni(B)li<k = M (B) + -+ + A(B). (41)
i=1 i=1
Similarly
n n
tr(Blw) =Y Xi(B)pi = > Xi(B)lizn—k41 = An—rs1(B) + -+ + An(B). (42)
i=1 i=1
Finally we can finish the proof using Problem 2, which tells us
Miy(A+B)+ -+ X, (A+ B)=R(A+ Bjiy, - ,iy)
— sup inf tr(A + Blw)
(Vi Vi) EF (i, yir) WESK(Vaye+ Vi)
= sup inf tr(Alw) + tr(B|w
Vi, Vi) EF (i, yix) WeSk(Vi,-, Vi) ( ( | ) ( ‘ ))
< sup inf tr(Alw) + A1 (B) + -+ + A\ (B)
(Vi Vi) EF (i1, yigy) WESK(Viso Vi) ( w) B) )
sup inf tr(Alw) | + \(B)+ -+ M\ (B
((Vh'" Vi)EF (in,r i) WESK(Vi, e, Vi) ( ‘ )) 1( ) ( )
=R (Ayir, - ig) + M(B) + -+ A(B)
— A (A) o+ A (A) £ A (B) + -+ Au(B). (43)
Similarly, we can get the inequality in the other direction,
(A4 B) 4 Ay (A B) = A (A) -+ My (A) + At (B) + -+ Aa(B). (44)
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