EE378B Homework 3 Solution

Due to: Chen Cheng

1 Problem 1

(a)

A Laplacian random variable X with density p(z) = Je~|#l. We have an explicit form for its MGF,

0 " .
E [e’\X} = 1 (/ cA+Dz g, +/ Ooe(,\—nxdw) _ )i I\l < 1, "
2w 0 +oo, else.

Clearly X is not sub-Gaussian. Note that for all |\| < 1//2 it holds that

1 2
m§1+2/\2§62)\, (2)
we can choose b = 2, and X is 2-sub-exponential.

For any point u € B} (0, 1), we construct an @ € N™(L) that is close to . In particular, let sign(u;) =
sign(z;) and

9 270 270 <22 <271 for some 0 < I < L,
"o x? <271 )
By this construction it clearly holds that u? € Sr,Vi = 1,2,--- ,n and |Jullz < ||z/l2 < 1, and thus
u € N"(L). We notice that
(_L) 2 g2>9-L 1)\?
(zi —wi)® < . v2) T ;— L’ < (1—\@) a2+ 27k (4)
275 Ty <27%,
which further suggests,
1)? 1)?
2 2 — log, n—c —c
rz—ull5<|(1-— x||5 4+ n2~ 082 °§(1—> + 27, 5
lo -l < (1- ) ll} ¥ )

2
For large enough ¢y, we can set ¢y := \/(1 — %) + 27 < % N™(L) is then an ep-net of the unit

ball. Finally we use the ey-net to provide an upper bound for || X||op. Simply notice that for any
x € BY(0,1),y € B42(0,1), we can find & € Ny, (L),§ € Ny, (L) such that

|z — &2 < €0, ly — 92 < €o, (6)
and thus

[(z, Xy)| < [(&, Xy)| + [(z — &, Xg)| + [(z, X (y — 9))|
< [{®, Xy)| + 2¢0[ X [|op- (7)

Taking maximum over both sides yields

Xllop = max xz, Xy)| < max max u, Xv)| + 2¢0|| X ||op- 8
Xl =, o @ Xy) € max e [ X)| 4 200X o (8)



Hence

{1Xllop > 1} C {|<u7Xv>| > ! } ©)

1-— 260
and taking C(ep) = (1 — 2¢) " concludes the proof.

(c) Denote by B} the collection of all subsets of [n] of cardinality k. Let C} := {x, —, +}7 x B We claim
that there exists two surjections such that

QOTZLl C;lz — Nih (10)
-1

el [ e — N2 (11)
k=0

Therefore [N,| < €3] and [N7,| < \H;;lo cz.|. While for each & < n it holds that

icr| < (Z)gk < (?)Zl)k (12)

Thus it follows that

3en 2
INZ)| < <2l) ; (13)
-1 2
" 3en
vzl < 1 (%)
k=0
-1 -1
< exp {Z 28 log (3en) — Z k2* log2}
k=0 k=0

=exp {(2' — 1) log (3en) — (12 —2(2' — 1)) log 2}
= exp { (21 — 1) log (12en) — 12! log 2}

< (12;”)2l . (14)

Therefore we prove the result for ¢; = 12e. It is only left for us to construct ¢Z; and ¢Z,.

(i) For any A}, x Bl € Cl;, we define

0, if i ¢ By, or i € By, and is the j-th largest, but (Agl)j = %
O™ (A% x Bl = =272 ifie B, and is the j-th largest, (Ag,)j =—
272 ifje B and is the j-th largest, (Ag,)j = +.
(15)

This is clearly a mapping to NZ;, and since for any element in N, there are at most 2! non-zero
coordinates, we have ¢, is surjective.

(i) For any [T\t A% x BE e [Tit, Co, let

2k7
-1
o, (H A x B)
k=0

B {The only nonzero element among ¢, (A}, x BJ,) for k =0,1,--- 1 —1;

%

. (16)
0, otherwise,



and
_ ~ -1 4k k ~ -1 4k k
o (T a7 (oAbl ) o (T 48 < B3 ), <1,
P<i HAzl X By | = o -1 4k % (17)
k=0 0, ‘ (23 ( k=0 A1 X BQZ) H :
Similarly, one can verify that ¢©7, maps onto NZ,.

Alternative Approach:
Observe that

1 1
NZ,UNZ, C {a: € By(0,1) : 27 € {0,1,2,...,2(} Vi e [n]} = NZ(41)-

We now count NZ(@—H)' Let y; = 2533?, then y; are nonnegative integers satisfying 31 + - - - 4+ y, < 2°.

The number of possibilities for such y is upper bounded by the number of integer solutions to this

inequality, which is by stars and bars, (”;2@) = (";22). Further, as £ < L = 2°n, we have

<n ;25) . ((260;1)11) < <<2;1>6”>2

Finally, notice that 2; = £1/2%y;, and there are at most 2¢ nonzero elements in each ¥, so we get

14 14
N <92 (20 + Den\ > _(2e(2® +1)n 2
<(+1)| = ol - 90 :

Thus the desired bound holds with ¢; = 2e(2% + 1) < 66e < 180.
Directly following the definition of sub-exponential, we see that
Bt Xuvs < o(u) /2 )\ < (Juguy[b) 7Y (18)
since X;; is b-sub-exponential. Thus u;X;;v; is |u;v,|b-sub-exponential. Hence by Bernstein inequality,
di da

P(|<U,X’U>|Zt)zp ZZUiXij’Uj Zt

i=1j=1

< : t 2
< 2expq —comin 7 y Y y
1 2 . 1 2 2,212
max;L, max;Z, [uvilb Y iy upvsh

<20 {~comin (ot D)) (19)
S Xpy —Comin \ ~——— 11 575 y
blulllol ¥

where in the last inequality we use 3%, 2?2:1 uZvib? = b S u? 2?2:1 v? = b?|lul3]lv]3 < b* since
u € B3(0,1),v € B&(0,1).

By the definition of 7~; and 7—;, we have for any € N"(L) that,

z=n_p(x)+r<r(x), (20)
-1

Ta(x) = Zﬂzk(w)~ (21)
k=0

Hence for any u € N (L),v € N9 (L),

(u, Mv) = (m—p(u) + 7<(u), M (r=1(v) + 7<1(v)) . (22)



Notice that for any [ = 1,2,--- , L one has
<7T:l(’u) + 7T<l(u), M (7‘(‘:[(’0) + 7r<l('v))

= (r=i(u), Mr—(v)) + (r<i(u), Mr—(v)) + (m=i(u), M7 (v)) + (1<i(u), Mr<i(v))
= (m=i(u), M7= (v)) + (T<i(u), Mr—(v)) + (7= (w), M7 (v))

<7T:l_1(u) + 7r<l_1(u), M (Tl':l_l(’l)) + 7r<l_1('v))>. (23)
We thus can expand (u, Mwv) iteratively using the equation above for [ = L,L — 1,--- ,1 and obtain
L L L
(u, Mv) = Z moi(w), Mr—(v)) + > (ma(uw), Mr(v)) + Y (r—i(u), M (v).  (24)
1= 1=0 1=0

The proof is done.
(f) We use the results from (c) and (d) and make use of the fact that ||7—;(u)||o < 272, Thus

(e, (), Xroa(o)] > 1)

u€Nd1 (L) ’UGI\/d2 (L

t t}
di (| A 1
< INZINS - 2exp —c0m1n<b eI 5/2’b2>}

t2! 7
<9 (C1d1> <Cld2) exp{—cmnm( lb b2>}
142

2(Cld1d2> exp{—comln (tlb2 22)} (25)
C%dldg 2 t12l/2 tZQ

P , X >t <2 — i - 26

(it et Xt 20) 22345 o (2 0) ) o
2 2! 12 42

P < max max |[(m—(u), X7 (v))| > tl> <2 (61§;d2> exp {co min (tl2b, Zg) } . (27)

uENy, (L) vEN, (L)

Similarly we get

(g) Take t; := Cb2"/? into (f) for some constant C' to be determined. Then by (e),

L
IP( max  max [{u, Xv)| > SCbZ 2l/2>

uGNdl (L) ’UGNd2 (L) =0

< 62 (Cldldz) exp {—co2l min (C, 02)}
2
< G;CXP {21 (log (cliidQ) — comin (C, 02))}. (28)

2 log(cfdldg)
co

By taking C' > V 1, then

2d1d 2d1d
log <Cl 2? 2) — ¢omin (C, Cz) = log <Cl 2} 2) —¢coC < 7%, (29)

and therefore

Sl (245) )} < S () ;2 o




On the other hand take L = logy(dy V d3) + co,

2(L+1)/2 -1

L
DA = T gl 2 3 0BV
=0

Taken collectively, we have

_C()C)

co+1 6exp( e
P max max |(u, Xv)| >9-2 - Cby/dy v d < — 27
(uGNd1 (L) vEN4, (L) |< >| - ! 2) -1 exp (—%)

for all C' >

. 02
M V 1. Taking into (b) and we finally get

P <||X||Op > C1by/dy V dgt) < Cyexp(—Cst), V> Culog(dy Vds),

for some universal constants Cy, Cs, Cs, Cy > 0.

(31)
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