EE378B Homework 7 Solution

Due to: Chen Cheng

1 Part (a)

Direct application of Wielandt-Hoffman inequality gives
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2 Part (b)
For simplicity we write
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As a consequence of part (a) we know limsup,,_,., An x < Ag. By Markov’s inequality
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X For the above two inequalities, take lim sup on both sides

Similarly we bound F,(z) — FX(z +¢€) <
and rearrange terms, which gives the desired result
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Finally, if F¥(z) — F(x) for every z € R as K — oo, using the fact that Ax — 0 since Wiz has finite
second moment, we obtain by taking K — oo that

F(z —¢) <liminf F,,(z) < limsup F,(z) < F(z +¢€). (7)
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Whenever F' is continuous at x, by taking e — 0 it is concluded that lim,, o Fy,(z) = F(x).

3 Part (c)

In fact, it suffices to show that for all K with Sx = Var (W12H|W12\§K)7

/ \/mlm@mdt (8)

e., the semi-circular law with variance Sx. Then all conditions hold since Sx — 1 as K — oo and
FK(x) — F(z) pointwise with F(x) being the semi-circular law CDF with variance 1.
Let WK = WK 4+ ax117 where ax = —E[Wi2ljw,,<k]- Then EWX = 0 and we can apply results
that have been shown in class that

FE(z) » FE(z)
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where FX(z) is the empirical CDF of eigenvalues of WX /y/n. The proof will be concluded once we can
establish

FEX(z) - FX(z)] =0 (10)

for any fixed K and x € R. By the generalized Weyl’s inequality, we're able to get

X (WE /) = Nt (WE/vVn) + Ano1(ax 117 /y/n), i=1,2,- ,n-1 (11)
N (WE /) < Mt (WE//n) + Aa(ax11T /y/n), i=2,3,---,n. (12)
While ax 117 /y/n is only a rank-1 matrix, it follows when n > 3 that
Ao(ax11T /v/n) = A 1(ag1l’ /y/n) =0, (13)
which gives us
N (WE /) > Mg (WE /), i=1,2,---,n—1; (14)
N (WE//n) < N\t (WE /), i=2,3--,n. (15)

By the first bound, one can deduce that
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The other side is similar, and therefore |F},

K(z) — Ff(x)‘ < 1/n — 0. The proof is done.




4 Part (d)

We can generate uniformly distributed (in the sense of Haar’s measure) orthogonal matrices U € R"*¥
by first generate an n by k matrix with i.i.d. standard Gaussian entries and perform Gram-Schmidt or-
thogonalization. Since the distribution of Gaussian matrix is invariant under orthogonal transformation,
the distribution of resulting orthogonal matrix U is also invariant, and thus is uniformly distributed under
Haar’s measure.

(i) The plots are shown in Figure 1.
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Figure 1: Histograms of eigenvalues of Y when n = 500 (left top), n = 1000 (right top), n = 2000 (left
down), n = 4000 (right down).

(ii) The result is different from Winger’s semicircle’s law whereas the histogram should look like a semicircle.

(iii) We can’t apply since the entries Y;; are correlated.

Remark from class: What happens for a larger choice of constant? Does it recover the semicircle law?
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