
EE378B Homework 7 Solution

Due to: Chen Cheng

1 Part (a)
Direct application of Wielandt-Hoffman inequality gives
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where ξij are i.i.d. random variables having the same distribution as W 2
121|W12|>K . Therefore by SLLN with

probability 1,
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2 Part (b)
For simplicity we write
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As a consequence of part (a) we know lim supn→∞∆n,K ≤ ∆K . By Markov’s inequality
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which allows us to derive that
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Similarly we bound Fn(x) − FKn (x + ε) ≤ ∆n,K

ε2 . For the above two inequalities, take lim sup on both sides
and rearrange terms, which gives the desired result
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Finally, if FK(x) → F (x) for every x ∈ R as K → ∞, using the fact that ∆K → 0 since W12 has finite
second moment, we obtain by taking K →∞ that
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Whenever F is continuous at x, by taking ε→ 0 it is concluded that limn→∞ Fn(x) = F (x).

3 Part (c)

In fact, it suffices to show that for all K with βK = Var
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i.e., the semi-circular law with variance βK . Then all conditions hold since βK → 1 as K → ∞ and
FK(x)→ F (x) pointwise with F (x) being the semi-circular law CDF with variance 1.
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that have been shown in class that
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for any fixed K and x ∈ R. By the generalized Weyl’s inequality, we’re able to get
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By the first bound, one can deduce that
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The other side is similar, and therefore
∣∣∣F̃Kn (x)− FKn (x)

∣∣∣ ≤ 1/n→ 0. The proof is done.
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4 Part (d)

We can generate uniformly distributed (in the sense of Haar’s measure) orthogonal matrices U ∈ Rn×k
by first generate an n by k matrix with i.i.d. standard Gaussian entries and perform Gram-Schmidt or-
thogonalization. Since the distribution of Gaussian matrix is invariant under orthogonal transformation,
the distribution of resulting orthogonal matrix U is also invariant, and thus is uniformly distributed under
Haar’s measure.

(i) The plots are shown in Figure 1.

Figure 1: Histograms of eigenvalues of Y when n = 500 (left top), n = 1000 (right top), n = 2000 (left
down), n = 4000 (right down).

(ii) The result is different fromWinger’s semicircle’s law whereas the histogram should look like a semicircle.

(iii) We can’t apply since the entries Yij are correlated.

Remark from class: What happens for a larger choice of constant? Does it recover the semicircle law?
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