
S
c

a
le

 a
n

d
 c

o
m

p
le

x
it

y
 i
n

 b
a

n
k

in
g

 –
 E

E
3

8
0

, 
S

ta
n

fo
rd

, 
M

a
y

 2
0

1
1

 

Technology in banking –  

a problem in scale and complexity 

Stanford University, 11 May 2011 

Peter Richards and Stephen Weston 

 

 

 2011 JPMorgan Chase & Co.  

All rights reserved. Confidential and proprietary to JPMorgan Chase & Co. 



S
c

a
le

 a
n

d
 c

o
m

p
le

x
it

y
 i
n

 b
a

n
k

in
g

 –
 E

E
3

8
0

, 
S

ta
n

fo
rd

, 
M

a
y

 2
0

1
1

 

The business challenges in global banking within JPMorgan Chase 

encompass many areas of computer science – with the added 

dimension of scale.  

This introductory talk will examine the scope of challenges that are 

currently being faced by the technology team at JPMorgan Chase. 

Specifically, abstraction in both application and data environments, 

security and control and application resiliency in a continuous 

environment. 

A case study will provide depth and context.  

 
 

2 

Our talk today 



S
c

a
le

 a
n

d
 c

o
m

p
le

x
it

y
 i
n

 b
a

n
k

in
g

 –
 E

E
3

8
0

, 
S

ta
n

fo
rd

, 
M

a
y

 2
0

1
1

 

Scale at JPMorgan Chase 

Complexity at JPMorgan Chase 

Challenges 

A case study 

Conclusions 

Q & A 

If what you have heard is of interest… 

Structure of the talk 

3 



S
c

a
le

 a
n

d
 c

o
m

p
le

x
it

y
 i
n

 b
a

n
k

in
g

 –
 E

E
3

8
0

, 
S

ta
n

fo
rd

, 
M

a
y

 2
0

1
1

 

Business scale 

 JPMC Headcount: 240,000+ 

 24.5MM checking accounts; 5,500 branches; 
15,500 ATMs 

 139 million cards in circulation 

 $1.8Tn Assets Under Supervision 

 Clears over $5Tn daily 

Infrastructure scale 

 > 950K+ sqft datacenter space, 42 Datacenters 

 50K+ servers 

 150PB of storage 

 300,000 endpoints (desktops, laptops, VDI) 

 1.4m network ports 

Application scale 

 14,000 applications 

 Many millions of lines of code  

JPMorgan Chase has a global technology footprint 

Mobile scale 

 35,000 blackberries 

 5,000 users of corporate email 
on personal devices 



S
c

a
le

 a
n

d
 c

o
m

p
le

x
it

y
 i
n

 b
a

n
k

in
g

 –
 E

E
3

8
0

, 
S

ta
n

fo
rd

, 
M

a
y

 2
0

1
1

 

• Today, we are talking about challenges posed by scale 

and complexity and how they are faced by our teams in 

technology and quantitative research 

• Over 30y profitability has gone up by a factor of 30 with 

only twice as many people (12% growth rate) 

• Mostly due to gains in productivity due to technology 

paired with smart algorithms that take advantage of that 

technology 

• Our dependence on technology and automation through 

algorithms is growing as markets become increasingly 

electronic 

Challenges 

5 



S
c

a
le

 a
n

d
 c

o
m

p
le

x
it

y
 i
n

 b
a

n
k

in
g

 –
 E

E
3

8
0

, 
S

ta
n

fo
rd

, 
M

a
y

 2
0

1
1

 

Challenges (just a few!) 

6 

Scale & 

Complexity 

Tele-presence to 

leverage product 

knowledge specialists 

across 5,000 

branches 

Low-latency/high frequency 

trading & risk management 

for $Tn of trades 

Real-time fraud detection to 

protect our 27m credit card 

customers 

Optimising data transformation, 

storage and transmission for 

160Pb of data 



S
c

a
le

 a
n

d
 c

o
m

p
le

x
it

y
 i
n

 b
a

n
k

in
g

 –
 E

E
3

8
0

, 
S

ta
n

fo
rd

, 
M

a
y

 2
0

1
1

 

• We are now going to turn to a case study that highlights 

J.P.Morgan‟s commitment to meeting these challenges 

by harnessing its capabilities and capacity for innovation 

• We will be focusing on a small part of a multi-year 

collaborative project between J.P.Morgan and a small but 

talent-packed firm called Maxeler Technologies started 

by a present and former Stanford allumni 

Case study 

7 



S
c

a
le

 a
n

d
 c

o
m

p
le

x
it

y
 i
n

 b
a

n
k

in
g

 –
 E

E
3

8
0

, 
S

ta
n

fo
rd

, 
M

a
y

 2
0

1
1

 

CPU v FPGA - how the silicon is used 

Intel 6-Core X5680 “Westmere” Xilinx Virtex-6 SX 475T 

 Block RAM DSP Block 

8 



S
c

a
le

 a
n

d
 c

o
m

p
le

x
it

y
 i
n

 b
a

n
k

in
g

 –
 E

E
3

8
0

, 
S

ta
n

fo
rd

, 
M

a
y

 2
0

1
1

 

FPGA-101 

• Field Programmable Gate Arrays (FPGAs) are programmable 

semiconductor devices that are based around a matrix of configurable logic 

blocks connected via programmable interconnects.  

• Compared to normal microprocessors, where the design of the device is 

fixed by the manufacturer, FPGAs can be programmed and precisely 

configured to compute the exact algorithm(s) required by any given 

application.  

• This makes FPGAs very powerful and versatile because it enables the 

programmer to change the computer to fit the algorithm (which enables 

huge performance gains), compared the other way round in Intel world. 

• So, the calculations per Watt of power consumed, per metre3 are 

between 100 and 1000 times better for an FPGA compared to a 

standard Intel core. 

9 



S
c

a
le

 a
n

d
 c

o
m

p
le

x
it

y
 i
n

 b
a

n
k

in
g

 –
 E

E
3

8
0

, 
S

ta
n

fo
rd

, 
M

a
y

 2
0

1
1

 

• An algorithm is implemented as a special 

configuration of a general purpose electric circuit. 

• Connections between prefabricated wires are 

programmable 

• Function of calculating elements is itself 

programmable 

• FPGAs are two dimensional matrix-structures of 

configurable logic blocks (CLBs) surrounded by 

input/output blocks that enable communication with 

the rest of the environment. 

FPGA-102 

x 

* 

+ 

y 

 

f(x) = x2 + x 

 

Moving from a 

single calculation to 

fine-grained 

parallelism 

A very simple example: 

A slightly more complex example: 

x 

* 

+ 

y 

x 

* 

+ 

y 

Migrating algorithms from C++ to FPGAs 

involves doing a Fourier Transform from 

time domain execution to spatial domain 

execution in order to maximise 

computational throughput – it’s a 

paradigm shift to stream computing 

that provides acceleration of up to 

1,000x compared to an Intel CPU. 

10 



S
c

a
le

 a
n

d
 c

o
m

p
le

x
it

y
 i
n

 b
a

n
k

in
g

 –
 E

E
3

8
0

, 
S

ta
n

fo
rd

, 
M

a
y

 2
0

1
1

 

The general conclusion from our initial review of existing research was: 

 

 

 

 

 

 

 

 

So, based on the above findings we decided on the following acceleration 

approach for credit hybrids: 

• FPGAs – use for tranche evaluation. 

• GPUs – use for default/survival curve generation. 

But, it is worth bearing in mind that FPGAs can also be made to run simple 

algorithms (e.g. survival curve generation) very fast. 

 

A certain degree of complexity is 

required and the implementation can 

take advantage of data streaming and 

pipelining

Applications contain a lot of 

parallelism but involve computations 

which cannot be efficiently 

implemented on GPUs

Applications that require a lot of 

complexity in the logic and data flow 

design – e.g. Gaussian elimination

Applications have a lot of memory 

accesses and have limited parallelism 

Computation involves lots of detailed 

low-level hardware control operations 

which can not be efficiently 

implemented in a high level language –

e.g. bespoke tranche valuation

No interdependence in the data flow 

and the computation can be done in 

parallel – e.g. survival curve 

bootstrapping

FPGAsGPUs

A certain degree of complexity is 

required and the implementation can 

take advantage of data streaming and 

pipelining

Applications contain a lot of 

parallelism but involve computations 

which cannot be efficiently 

implemented on GPUs

Applications that require a lot of 

complexity in the logic and data flow 

design – e.g. Gaussian elimination

Applications have a lot of memory 

accesses and have limited parallelism 

Computation involves lots of detailed 

low-level hardware control operations 

which can not be efficiently 

implemented in a high level language –

e.g. bespoke tranche valuation

No interdependence in the data flow 

and the computation can be done in 

parallel – e.g. survival curve 

bootstrapping

FPGAsGPUs

Good fit 

Poor fit 

Good fit 

Poor fit 

Source: “Accelerating compute intensive applications with GPUs and FPGAs”, 

Che, Li, Shaeffer, Skadron and Lach, University of Virginia, 2008. 

Suitability for migration 

11 



S
c

a
le

 a
n

d
 c

o
m

p
le

x
it

y
 i
n

 b
a

n
k

in
g

 –
 E

E
3

8
0

, 
S

ta
n

fo
rd

, 
M

a
y

 2
0

1
1

 

Hybrid computer design 

Compute 8x 2.66GHz Xeon Cores 

2x SX240T FPGAs 

Interconnect PCI-Express Gen. 1 

MaxRing 

Gigabit Ethernet 

Storage 2x 1TB Hard disks 

Memory 48GB DRAM 

Form Factor 1U 

Machine 40U 

Specifications: 

MaxRing 

FPGA FPGA 

Xeon 
Cores 

PCIe PCIe 

MAX2 Node Architecture 

12 



S
c

a
le

 a
n

d
 c

o
m

p
le

x
it

y
 i
n

 b
a

n
k

in
g

 –
 E

E
3

8
0

, 
S

ta
n

fo
rd

, 
M

a
y

 2
0

1
1

 

SX240T 

FPGA 

(2.25MB) 

SX240T 

FPGA 

(2.25MB) 

Mem 
12GB 

Mem 
12GB 

PCI Express x16 

14.4 
 

GBytes/s 

4 
GBytes/s 

4 
GBytes/s 

4.8 
 

GBytes/s 

x86 
Processors 

Main  
Memory 

24GB 

MaxRing 

4.8 GBytes/s 
MaxRing 

4.8 GBytes/s 

14.4 
 

GBytes/s 

Hybrid compute node design 
Bandwidth on MAX2 cards 

13 



S
c

a
le

 a
n

d
 c

o
m

p
le

x
it

y
 i
n

 b
a

n
k

in
g

 –
 E

E
3

8
0

, 
S

ta
n

fo
rd

, 
M

a
y

 2
0

1
1

 

Hybrid compute node architecture 

 

 

Python API is used to specify pricing streams and manage data I/O. 

How the FPGA machine is called: 

Compute Node Architecture

FPGA Arbitration Layer

FPGAFPGA

Per CPU Process

Triton / Qlibs

MaxLib

Pricing 
Logic

Node Control Process
Node Data

Process

FileSystem 
or Shared 
Memory

for Input / 
Output 

Data

D
at

a 
A

P
I

Control API

1

• FPGAs are statically scheduled, so computation 

and data I/O both have predictable performance. 

• Our approach is based on hardware platform and 

MaxelerOS configuration options. 

• Since computation + data movement costs are 

known, performance can be predicted very 

accruately for specified hardware architecture 

14 

Compute node 

architecture 



S
c

a
le

 a
n

d
 c

o
m

p
le

x
it

y
 i
n

 b
a

n
k

in
g

 –
 E

E
3

8
0

, 
S

ta
n

fo
rd

, 
M

a
y

 2
0

1
1

 

• Traditional HPC processors are 

designed to optimize latency, but 

not throughput. 

• Structured arrays such as 

FPGAs, offer complementary 

throughput acceleration. 

• Properly configured, an array can 

provide 10x-100x improvement in 

arithmetic or memory bandwidth 

by streaming. 

• Some distinctions: 

• Memory limited vs. compute 

limited 

• Static vs. dynamic control 

structure 

• Homogeneous v core + 

accelerator at the node 

Manager-kernel interaction 

15 



S
c

a
le

 a
n

d
 c

o
m

p
le

x
it

y
 i
n

 b
a

n
k

in
g

 –
 E

E
3

8
0

, 
S

ta
n

fo
rd

, 
M

a
y

 2
0

1
1

 

Iterative acceleration process 

Loop timing 

measurement 

• When designing the kernels it is 

critical to allocate time early in the 

design schedule to decide what 

logic to implement in software that 

runs on the CPU and what to 

implement on the FPGA. 

• The MaxParton tool is used to 

profile and partition the source 

code for acceleration prediction.  

• Clearly the timing-critical portions 

of the design should go in the 

faster FPGA while non-critical 

portions should go in the 

processor; however this partitioning 

is not always so black and white 

and the final design is usually the 

result of iteration. 

• The iterative process covers 

algorithm, architecture, and 

arithmetic level of optimisation. 

Arithmetic 

precision 

simulation 

Automatic 

control/data flow 

analysis 

Constraints- 

bound 

performance 

estimation 

16 



S
c

a
le

 a
n

d
 c

o
m

p
le

x
it

y
 i
n

 b
a

n
k

in
g

 –
 E

E
3

8
0

, 
S

ta
n

fo
rd

, 
M

a
y

 2
0

1
1

 

Partitioning source code is carried out using the MaxParton tool 

suite consisting of the following tools: 

• Multithreaded lightweight timer 

• Arithmetic precision simulator 

• Automatic control / data flow analyser 

• Constraints-bound performance estimator 

• MaxParton enables the developer to  

• Carry out run-time analysis of compiled software 

• Automatically analyse impenetrable object-oriented C++ 

software. 

• Traces data dependencies between functions and libraries 

• Using MaxParton is a three stage process 

• Trace 

• Analyse 

• Visualise 

 
 

17 

Iterative acceleration process 

Trace 
Control + 
Memory 

Flow 

Initial 
Program 

Analyse 
Control Flow & 

Data 
Dependencies 

Visualise 
part or all of 
the program 

Analyse locality: 

Temporal locality: 

recently accessed 

items are likely to be 

accessed in the near 

future. 

Spatial locality: items 

whose addresses are 

near one another tend 

to be referenced close 

together in time. 

A program spends ~90% of its 

time in 10% of its code 



S
c

a
le

 a
n

d
 c

o
m

p
le

x
it

y
 i
n

 b
a

n
k

in
g

 –
 E

E
3

8
0

, 
S

ta
n

fo
rd

, 
M

a
y

 2
0

1
1

 

Dependency through heap 

memory allocation 

Control flow  

Data flow  

(size in bytes) 

Nested „for‟ loop 

structures 

Hot-spots identified by 

color 

18 

Iterative acceleration process 



S
c

a
le

 a
n

d
 c

o
m

p
le

x
it

y
 i
n

 b
a

n
k

in
g

 –
 E

E
3

8
0

, 
S

ta
n

fo
rd

, 
M

a
y

 2
0

1
1

 

MaxParton allows the developer to: 
• Evaluate partitioning of Storage in: 

• Host memory (~96GB) 
• FPGA BRAM Memory (2-4.7MB) 
• DDR Memory (12-24GB) 

• Assign bandwidths based on platform: 
• FPGA BRAM Memory (~ 9 TB/s) 
• DDR Memory (~40 GB/s) 
• PCI-Express (1-4 GB/s) 
• MaxRing (1-4 GB/s) 

• Evaluate placing computation on: 
• CPU  
• FPGA 

• To determine and predict highest performance partitioning option subject to Amdahl‟s 
Law: 
 
 
 
 

where F = fraction of the code enhanced and S = the speedup of enhanced fraction.  
You will notice that the best overall speedup that can be achieved according to this Law 
is 100% of the speedup of the enhanced fraction as you approach 100% of code  
enhanced. 

19 

Iterative acceleration process 

 
S

F
F

edupOverallSpe





1

1



S
c

a
le

 a
n

d
 c

o
m

p
le

x
it

y
 i
n

 b
a

n
k

in
g

 –
 E

E
3

8
0

, 
S

ta
n

fo
rd

, 
M

a
y

 2
0

1
1

 

Valuation of tranched CDOs 

Market factor 

Correlation 

Unconditional Survival Probability for this Name 

Conditional Survival Probability for this Name 

Amount of Loss (%) 

P
ro

b
a
b
ili

ty
 

Amount of Loss (%) 

P
ro

b
a

b
ili

ty
 

0 100 

1 

Good Market (M>>0) Bad Market (M<<0) 

M 

20 

• So, how is the tranche valuation code mapped into FPGA code? 

• The base correlation with stochastic recovery model is used to value tranche based 

products. 

• At its core, the model involves two key computationally intensive loops:  

• Constructing the conditional survival probabilities using a Copula 

• Constructing the probability of loss distribution using convolution. 

0 100 

1 



S
c

a
le

 a
n

d
 c

o
m

p
le

x
it

y
 i
n

 b
a

n
k

in
g

 –
 E

E
3

8
0

, 
S

ta
n

fo
rd

, 
M

a
y

 2
0

1
1

 

Valuation of tranched CDOs 

for i in 0 ... markets-1

for j in 0 ... names-1

prob=cum_norm((inv_norm(Q[j])-sqrt(p)M)/sqrt(1-p);

loss=calc_loss(prob,Q2[j],RR[j],RM[j])*notional[j];

n = integer(loss);

L = fractional(loss);

for k in 0 ... bins-1

if j == 0

dist[k] = k == 0 ? 1.0 : 0.0;

dist[k] = dist[k]*(1-prob) + 

dist[k-n]*prob*(1-L) + 

dist[k-n-1]*prob*L;

if j == credits -1 

final_dist[k] += weight[i] * dist[k];

end # for k

end # for j

end # for i

21 

After removing the C++ class hierarchy, the “flattened” C-code looks like 

this: 



S
c

a
le

 a
n

d
 c

o
m

p
le

x
it

y
 i
n

 b
a

n
k

in
g

 –
 E

E
3

8
0

, 
S

ta
n

fo
rd

, 
M

a
y

 2
0

1
1

 

Kernel design 

23% of 

execution  

time 

75% of 

execution  

time 

Loop graph output identify two kernels for bitstream design – copula and convolution 

Loop graphs are generated from MaxParton to visualise 

control and data flows 

22 



S
c

a
le

 a
n

d
 c

o
m

p
le

x
it

y
 i
n

 b
a

n
k

in
g

 –
 E

E
3

8
0

, 
S

ta
n

fo
rd

, 
M

a
y

 2
0

1
1

 

Convoluter Design 

C
re

d
it
s
 U

n
ro

lle
d
 (

c
) 

Market Factors Unrolled (m) 

Conditional Survival Probabilities 

Weights 

N
o
ti
o
n
a
l 

S
iz

e
s
 

Accumulated Loss Distribution  

(weighted sum) 

23 



S
c

a
le

 a
n

d
 c

o
m

p
le

x
it

y
 i
n

 b
a

n
k

in
g

 –
 E

E
3

8
0

, 
S

ta
n

fo
rd

, 
M

a
y

 2
0

1
1

 

Architecture 

The architecture of the bitstream is derived directly from loop graph, enabling relatively 

straight forward construction of the Java code which is then compiled  

CP

U 

CP

U 

CP

U 

CP

U 

CP

U 

CP

U 

CP

U 

CP

U 

24 



S
c

a
le

 a
n

d
 c

o
m

p
le

x
it

y
 i
n

 b
a

n
k

in
g

 –
 E

E
3

8
0

, 
S

ta
n

fo
rd

, 
M

a
y

 2
0

1
1

 

Original code 

for i in 0 ... markets-1

for j in 0 ... names-1

prob=cum_norm((inv_norm(Q[j])-sqrt(p)M)/sqrt(1-p);

loss=calc_loss(prob,Q2[j],RR[j],RM[j])*notional[j];

n = integer(loss);

L = fractional(loss);

for k in 0 ... bins-1

if j == 0

dist[k] = k == 0 ? 1.0 : 0.0;

dist[k] = dist[k]*(1-prob) + 

dist[k-n]*prob*(1-L) + 

dist[k-n-1]*prob*L;

if j == credits -1 

final_dist[k] += weight[i] * dist[k];

end # for k

end # for j

end # for i

HWVar d = io.input("inputDist", _distType);

HWVar p = io.input("probNonzeroLoss", _probType);

HWVar L = io.input("lowerProportion", _propType);

HWVar n = io.input("discretisedLoss", _operType);

HWVar lower = stream.offset(-n-1,-maxBins,0,d);

HWVar upper = stream.offset(-n,-maxBins,0,d);

HWVar o = ((1-p)*d + L*p*lower + (1-L)*p*upper);

io.output("outputDist", _distType, o);

25 

Flattened C code: MaxCompiler Java code: 

Setting the build level instructs MaxCompiler on 

which stage to run the build process to: 

FULL_BUILD: runs complete build process 

COMPILE_ONLY: stops after generating the VHDL output 

SYNTHESIS: only compiles the VHDL output 

MAP: will map the synthesised design to components on the 

FPGA 

PAR: will place and route the design for the FPGA, producing 

a bitstream  

The first task in the code migration is to remove all use of classes, templates and other C++ 

features in order to simplify parallelisation because abstraction kills parallelism (Prof 

Paul Kelly, Imperial College) 



S
c

a
le

 a
n

d
 c

o
m

p
le

x
it

y
 i
n

 b
a

n
k

in
g

 –
 E

E
3

8
0

, 
S

ta
n

fo
rd

, 
M

a
y

 2
0

1
1

 

Code design 

CDO pricers 

CopulaComputation.java 

CS Risk 

CSRiskBuilder.java 

CSRiskManager.java 

PV: 

PVBuilder.java 

PVManager.java 

AcklamFunc.java HartFunc.java 

Gaussian 

Copula 

Bernoulli 

Recursive 

Convoluter 

FFT 

Convoluter 

Gaussian 

Copula 
Integrator 

ConvoluterBuilder.java 

Convoluter.java 

Copula.java 

FFTConvoluterBuilder.java FFTDeconvoluterBuilder.java 

FFTKernelGeneration.java 

FFTDeconvoluter.java FFTConvoluter.java 

Copula.java IntegratorNumericalCore.java 

IntegratorNumerical.java 

Bitstream 

Kernel 

CDOPricerParameters.java 

Python API 

26 



S
c

a
le

 a
n

d
 c

o
m

p
le

x
it

y
 i
n

 b
a

n
k

in
g

 –
 E

E
3

8
0

, 
S

ta
n

fo
rd

, 
M

a
y

 2
0

1
1

 Algorithm Multiplications per  

output grid point 

Additions per  

output grid 

point 

Direct computation of 

discrete Fourier Transform: 

1,000 x 1,000 

8,000 4,000 

Basic Cooley-Tukey FFT: 

1,024 x 1,024 

40 60 

Hybrid Cooley-Tukey/  

Winograd FFT: 1,000 x 1,000 

40 72.8 

Winograd FFT: 

1,008 x 1,008 

6.2 91.6 

Nussbaumer-Quandalle FFT: 

1,008, x 1,008 

4.1 79 

Code design 
• Inside the convolution, a Fourier Transform is used to evaluate the integral. 

• Choice of algorithm to implement the Fourier Transform is critical. 

• Different algorithms have different characteristics, which need to be considered in 

relation to the number of available multipliers (known as DSPs) available on the 

FPGA. 

• The following table shows just how variable Fourier Transform algorithms are in 

terms of their requirements to  perform multiplications and additions:  

27 

Notice a factor of ~140x 

difference in 

performance between 

the best and the worst 

performance 



S
c

a
le

 a
n

d
 c

o
m

p
le

x
it

y
 i
n

 b
a

n
k

in
g

 –
 E

E
3

8
0

, 
S

ta
n

fo
rd

, 
M

a
y

 2
0

1
1

 

Code design – efficiency is key 

• Having designed the basic kernels and the structure of their code, the next stage to the acceleration 

process is to work out how to fit the maximum number of calculation pipes on to the FPGA chip. 

• Pipelining involves overlapping multiple instructions during execution with the objective of minimising 

the overall run time of the computation.  

• Pipelining therefore involves dividing the computation into stages so that each stage can completed 

as part of an instruction in parallel. 

• The stages are then connected together to form a pipe. 

• Instructions enter at one end, progress through the stages and exit at the other end. 

28 

Task 1 Task 1 …….. …… 

• Note that pipelining does 

not decrease the time taken 

for execution of an 

individual instruction, 

instead is increases 

instruction throughput. 

• The key to success with 

pipelining is to ensure that 

an instruction remains in 

the pipeline for the 

minimum amount of time 

but that its use is 

maximised during the 

duration of its stay. 

 

Task 1 

Task 2 Task 1 

Task 3 Task 2 Task 1 

Task 4 Task 3 Task 2 Task 1 

More instructions are fed in so that the pipeline is kept busy 

throughout the cycle time 

In
c
re

a
s
e
d
 n

u
m

b
e
r 

o
f 
p
ip

e
s
 



S
c

a
le

 a
n

d
 c

o
m

p
le

x
it

y
 i
n

 b
a

n
k

in
g

 –
 E

E
3

8
0

, 
S

ta
n

fo
rd

, 
M

a
y

 2
0

1
1

 

Building the PV manager 

package com.maxeler.clients.jpmorgan.cdopricers.pv; 

 

import com.maxeler.clients.jpmorgan.cdopricers.pv.bernoullirecursiveconvoluter.Convoluter; 

import com.maxeler.clients.jpmorgan.cdopricers.pv.gaussiancopula.Copula; 

import com.maxeler.maxcompiler.v1.managers.BuildConfig; 

import com.maxeler.maxcompiler.v1.managers.BuildConfig.Level; 

import com.maxeler.maxcompiler.v1.managers._BuildOnlyManager; 

import com.maxeler.maxcompiler.v1.kernelcompiler.Kernel; 

import com.maxeler.maxeleros.managercompiler.facade.ManagerDesign; 

import com.maxeler.maxeleros.managercompiler.facade.Stream; 

import com.maxeler.maxeleros.managercompiler.facade.blocks.KernelBlock; 

import com.maxeler.maxeleros.platforms.BoardCapabilities; 

 

public class PVManager extends ManagerDesign  

{   

 static protected Hashtable<String, Integer> m_addrTable;  

 static protected Hashtable<String, Integer> m_maskTable;  

 public CdoPricerParams _params; 

 

 public PVManager(_BuildOnlyManager manager, BoardCapabilities capabilities, String name) 

 { 

 super(manager, capabilities, name); 

 } 

 public void setupKernels(Kernel copula, Kernel convoluter, CdoPricerParams params) 

 public static void buildHardware(_BuildOnlyManager bm, String name, CdoPricerParams params) 

} 

29 



S
c

a
le

 a
n

d
 c

o
m

p
le

x
it

y
 i
n

 b
a

n
k

in
g

 –
 E

E
3

8
0

, 
S

ta
n

fo
rd

, 
M

a
y

 2
0

1
1

 

Building the kernels 

public void setupKernels(Kernel copula, Kernel convoluter, CdoPricerParams params)  

{ 

KernelBlock copula_core = addKernel(copula); 

KernelBlock conv_core = addKernel(convoluter); 

 

config.setNumberOfPCIExpressLanes(4); 

 

Stream perCredit = addStreamFromHost("perCreditInputBus"); 

copula_core.getInput("perCreditInputBus").connect(perCredit); 

 

for (int i = 0; i < params.getCreditUnrollFactor(); i++) 

{ 

 conv_core.getInput("credit_input" + i).connect(copula_core.getOutput("copulaOutput" + i)); 

 conv_core.getInput("prop_lower_input" + i).connect(copula_core.getOutput("propLowerOutput" +i)); 

} 

Stream pcieToHost addStreamToHost("pcieToHost"); 

pcieToHost.connect(conv_core.getOutput("output_pcie")); 

} 

Use PCIe x4 to reduce 

latency when streaming 

– critical for small runs 

PCIe going into Copula 

Copula to convoluter streams 

30 



S
c

a
le

 a
n

d
 c

o
m

p
le

x
it

y
 i
n

 b
a

n
k

in
g

 –
 E

E
3

8
0

, 
S

ta
n

fo
rd

, 
M

a
y

 2
0

1
1

 

Building the FFT kernel  
• Recall from the kernel design slide that the results of the marginal probability 

distribution generated by the Copula are fed into the convolution, which is in turn 

used to calculate the integral which finally produces the accumulated loss 

distribution.  

• Our approach is therefore to build a MultiPiped kernel for convolution, where we 

build MultiPipe explicitly from the credit data, allowing us to take advantage of 

various optimisation opportunities. 

• We are calculating:   

 

 where      and 

• We generate the kernels in pairs, sharing multiplies in order to save resources.  

• The bins have been re-arranged such that each pair of adjacent (complex) bins have 

a phase relationship which is a function of 90', which means we can use muxes to 

rotate the complex value accordingly. 

• We do this rotation after the multiply by p1 or p2, halving the number of DSPs needed 

for kernel generation.  

• The tp1 / tp2 values for the first 90' of the unit circle are stored in a lookup table 

(getExp()) and are indexed by n * k % (N / 4),  (n+1) * k % (N / 4) 

• Once multiplied they are fed into muxes with the computed phase selecting the 

correct input.   

• To compute the phase for a given pipe, we compute n * k / (N/4) and (n+1) * k / (N/4) 

22110
tpptppp 

)/2(

1

Ninketp  )/)1(2(

2

Nknietp  

31 



S
c

a
le

 a
n

d
 c

o
m

p
le

x
it

y
 i
n

 b
a

n
k

in
g

 –
 E

E
3

8
0

, 
S

ta
n

fo
rd

, 
M

a
y

 2
0

1
1

 

First, we need to define a map that will return tp1  and tp2:  

 
private Map<String, KComplex> getExp(int i, HWVar tp1Addr, HWVar tp2Addr) 

{ 

int romSize = _params.getFFTSize() / 4; 

Bits[] expTable = new Bits[romSize]; 

for (int nk = 0; nk < romSize; nk++)  

{ 

 double x = 2 * Math.PI * nk / (_params.getFFTSize()); 

 expTable[nk]  = _types._kernType.getContainedType().encodeConstant(new 

 KComplexType.ConstantValue(Math.cos(x), Math.sin(x))); 

} 

 

DualPortMemOutputs<KComplex> out = mem.romDualPort( 

 tp1Addr, 

 tp2Addr, 

 _types._kernType.getContainedType(), 

 expTable); 

   

LinkedHashMap<String, KComplex> tpMap = new LinkedHashMap<String, 

KComplex>(); 

tpMap.put("tp1", out.getOutputA()); 

tpMap.put("tp2", out.getOutputB()); 

return tpMap; 

} 

 

Building the FFT kernel  

Exponential lookup table 

We store the values of  

 

for nk < N/4 in lookup 

table in order to compute 

the kernels for 

convolution 

)/2(

1

Ninketp 

Create the 

Mapped ROM 

Return result for 

tp1 / tp2 

32 



S
c

a
le

 a
n

d
 c

o
m

p
le

x
it

y
 i
n

 b
a

n
k

in
g

 –
 E

E
3

8
0

, 
S

ta
n

fo
rd

, 
M

a
y

 2
0

1
1

 

Set up the kernel generator: 

 
public class FFTKernelGeneration extends KernelLib  

{ 

private final FFTConvoluterTypes _types;  

private final CdoPricerParams _params; 

private final Kernel _design; 

public FFTKernelGeneration(Kernel design, FFTConvoluterTypes types, CdoPricerParams params) 

{ 

super(design); 

_types = types; 

_params = params; 

_design = design; 

} 

Building the FFT kernel  

33 



S
c

a
le

 a
n

d
 c

o
m

p
le

x
it

y
 i
n

 b
a

n
k

in
g

 –
 E

E
3

8
0

, 
S

ta
n

fo
rd

, 
M

a
y

 2
0

1
1

 

…finally, build the multi-pipe kernel: 
KMultiPipe<KComplex> makeKernel (KStruct credit, HWVar currentStep) 

{ 

KMultiPipe<KComplex> kernel = _types._kernType.newInstance(_design); 

HWVar prob = ((HWVar)credit.get("prob_non_zero_value")); 

HWVar propLower = ((HWVar)credit.get("proportion_lower")); 

HWVar n = (HWVar)credit.get("operator_size"); 

 

if (!_types._isFixedPoint) optimization.pushEnableBitGrowth(false); 

HWVar p0_orig = (1 - prob).cast(_params.getFpgaRealType()); 

HWVar p2_orig = (prob * propLower).cast(_params.getFpgaRealType()); 

HWVar p1_orig = (prob - p2_orig).cast(_params.getFpgaRealType());  

 

if (!_types._isFixedPoint) optimization.popEnableBitGrowth(); 

KComplex p1tp1 = null, p2tp2 = null; 

KMultiPipe<KComplex> new_p1tp1 = _types._kernType.newInstance(_design); 

KMultiPipe<KComplex> new_p2tp2 = _types._kernType.newInstance(_design); 

HWVar nk = null; 

HWVar nkm = null; 

HWVar nkd = null; 

HWVar np1km = null; 

HWVar np1kd = null; 

HWVar phaseN = null, phaseNp1 = null; 

HWVar p0 = null; 

HWVar p1 = null; 

HWVar p2 = null;   

 

….. Continued…. 

Building the FFT kernel  

makeKernel() - builds a 

MultiPiped kernel for 

convolution. We build 

MultiPipe explicitly here 

from the credit data, 

which takes advantage of 

various optimisation 

opportunities 

34 



S
c

a
le

 a
n

d
 c

o
m

p
le

x
it

y
 i
n

 b
a

n
k

in
g

 –
 E

E
3

8
0

, 
S

ta
n

fo
rd

, 
M

a
y

 2
0

1
1

 

….. Continued…. 

for (int i = 0; i < _types._kernType.getNPipes() ; ++i) 

{ 

if ((i % 4) == 0)  

{ 

p0 = optimization.limitFanout(p0_orig, 4096);  

p1 = optimization.limitFanout(p1_orig, 4096); 

p2 = optimization.limitFanout(p2_orig, 4096);  

} 

FixOperatorFactory phaseCalcOpFactory = new FixOperatorFactory(); 

phaseCalcOpFactory.setMultDSPUsage(DSPUsage.LOW); 

phaseCalcOpFactory.setPreventCoregenUsage(true); 

 

if (i % 2 == 0) 

{ 

HWVar k = currentStep + (1 + i / 2); 

optimization.pushEnableBitGrowth(true); 

if (i == 0) 

nk = n * k; 

Else 

nk = nk + n; 

HWVar np1k = nk + k; 

optimization.popEnableBitGrowth(); 

int modBits = MathUtils.bitsToAddress(_params.getFFTSize() / 4); 

int sliceBits = 2; 

nkm = nk.cast(hwUInt(modBits)); 

nkd = nk.slice(modBits, sliceBits).cast(hwUInt(sliceBits)); 

np1km = np1k.cast(hwUInt(modBits)); 

np1kd = np1k.slice(modBits, sliceBits).cast(hwUInt(sliceBits)); 

phaseN = nkd; 

phaseNp1 = np1kd; 

Map<String, KComplex> expMap = getExp(i / 2, nkm, np1km); 

KComplex tp1 = expMap.get("tp1"); 

KComplex tp2 = expMap.get("tp2"); 

 

…..continued…. 

Building the FFT kernel  

35 

Fanout reducing 

registers Re-

register p0 - 2 

every few pipes 



S
c

a
le

 a
n

d
 c

o
m

p
le

x
it

y
 i
n

 b
a

n
k

in
g

 –
 E

E
3

8
0

, 
S

ta
n

fo
rd

, 
M

a
y

 2
0

1
1

 

….. Continued…. 

optimization.pushEnableBitGrowth(false); 

p1tp1 = (tp1 * p1).cast(_types._kernType.getContainedType()); 

p2tp2 = (tp2 * p2).cast(_types._kernType.getContainedType()); 

optimization.popEnableBitGrowth(); 

}  

else  

{ 

// Mapped on the unit circle 

optimization.pushEnableBitGrowth(true); 

nkd = (nkd + n); 

np1kd = (np1kd + n + 1); 

optimization.popEnableBitGrowth(); 

phaseN = nkd.slice(0, 2).cast(hwUInt(2)); 

phaseNp1 = np1kd.slice(0, 2).cast(hwUInt(2)); 

} 

new_p1tp1.connect(i, ArithOpt.complexRotate(p1tp1, phaseN)); 

new_p2tp2.connect(i, ArithOpt.complexRotate(p2tp2, phaseNp1)); 

} 

new_p1tp1.watch("newp1tp1"); 

new_p2tp2.watch("newp2tp2"); 

KComplex p0Complex = _types._kernType.getContainedType().newInstance(this); 

p0Complex.setReal(p0); 

p0Complex.setImaginary(p0Complex.getImaginary().getType().newInstance(this, 0.0)); 

KMultiPipe<KComplex> p0CompMP = _types._kernType.newInstance(this, p0Complex); 

optimization.pushEnableBitGrowth(false); 

kernel = TriAdd.add3(p0CompMP, new_p1tp1, new_p2tp2).cast(_types._kernType); 

optimization.popEnableBitGrowth(); 

return kernel.watch("kernel"); } 

} 

Building the FFT kernel  

36 

These are the 

kernels in the 

lower left 

section of the 

k*n plane. We 

need to map 

these to the 

other 7 sections 



S
c

a
le

 a
n

d
 c

o
m

p
le

x
it

y
 i
n

 b
a

n
k

in
g

 –
 E

E
3

8
0

, 
S

ta
n

fo
rd

, 
M

a
y

 2
0

1
1

 

Building the hardware 

public static voidbuildHardware(_BuildOnlyManager bm, String name, CdoPricerParams 

params) 

{ 

BoardCapabilities caps = params.getBoard(); 

PVManager manager = new PVManager(bm, caps, name); 

Copula copula = new Copula(bm, params); 

Convoluter convoluter = new Convoluter(bm, params); 

 

manager.setupKernels(copula, convoluter, params); 

manager.config.setStreamClockFrequency(params.getFrequency()); 

manager.config.setApplicationRevisionIds(params.getAppId(), params.getRevId()); 

 

BuildConfig build_config = new BuildConfig(Level.FULL_BUILD); 

build_config.setBuildEffort(params.getMPPREffort()); 

build_config.setMPPRCostTableSearchRange(params.getMPPRStartCT(),params.getMPPREndCT()); 

build_config.setMPPRParallelism(params.getMPPRThreads()); 

build_config.setEnableTimingAnalysis(true); 

build_config.setMPPRRetryNearMissesThreshold(params.getMPPRRetryThreshold()); 

bm.setBuildConfig(build_config); 

bm.setRootEntity(manager.build()); 

bm.build();  

} 

37 



S
c

a
le

 a
n

d
 c

o
m

p
le

x
it

y
 i
n

 b
a

n
k

in
g

 –
 E

E
3

8
0

, 
S

ta
n

fo
rd

, 
M

a
y

 2
0

1
1

 

Resource usage 

Computation Software 

Copula Kernel 22.00% 

Convolution and Integration 56.10% 
CPU CPU 

CPU CPU 

CPU CPU 

CPU CPU 

38 

Summary of FPGA Resources

LUTs FFs BRAMs DSPs Comment

149,760       149,760       516          1,056       Total available resources for FPGA

85,391         106,778       484          1,020       Total resources used

57.02% 71.30% 93.80% 96.59% % of available

65,078         94,567         396          1,020       Total for all designs

76.21% 88.56% 81.82% 100.00% % of available

20,313         12,211         88            -          Resources not associated with any design

23.79% 11.44% 18.18% 0.00% %

Detail for each kernel

LUTs FFs BRAMs DSPs Comment

37,987         53,622         276          800          BernoulliRecursiveConvoluter - total

44.49% 50.22% 57.02% 78.43% %

23,466         36,802         270          800          BernoulliRecursiveConvoluter - user

27.48% 34.47% 55.79% 78.43% %

14,047         14,399         6              -          BernoulliRecursiveConvoluter - scheduling

16.45% 13.48% 1.24% 0.00% %

474              2,421           -          -          BernoulliRecursiveConvoluter - other kernel

0.56% 2.27% 0.00% 0.00% %

27,091         40,945         120          220          CopulaFix - total

31.73% 38.35% 24.79% 21.57% %

24,179         27,828         119          220          CopulaFix - user

28.32% 26.06% 24.59% 21.57% %

2,771           11,951         1              -          CopulaFix - scheduling

3.25% 11.19% 0.21% 0.00% %

141              1,166           -          -          CopulaFix - other kernel

0.17% 1.09% 0.00% 0.00% %

MaxCompiler provides detailed information on how much of the available FPGA resources have 

been used by any given kernel. The information on this slide is for the PV kernel which combines 

the Copula and Convolution-Integration kernels, running across 100 pipes at 200Mhz on a single 

FPGA chip: 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

LUTs FFs BRAMs DSPs

FPGA Resource Usage for Copula and Convolution Kernels

% Not used in any kernel

% used for all kernels

% Available used



S
c

a
le

 a
n

d
 c

o
m

p
le

x
it

y
 i
n

 b
a

n
k

in
g

 –
 E

E
3

8
0

, 
S

ta
n

fo
rd

, 
M

a
y

 2
0

1
1

 

Handling errors 
During execution, errors can arise in three ways: 

• API calls 

• Python API wraps all errors in try-catch 

• Triton library calls 

• Triton exception handling will pass errors 

• MaxCompiler allows the user to optimise the numerical behaviour of kernel 

operations through two features: 

• Numeric exceptions (such as overflow) which allow the user to see 

numeric exceptions that occurred for which operations. 

• Doubt – which is a feature unique to MaxCompiler which allows the 

developer to see which data have been affected by a numeric 

exception. 

• Together these features allow the developer to detect and recover from all 

numeric exceptions generated in a Kernel. 

39 



S
c

a
le

 a
n

d
 c

o
m

p
le

x
it

y
 i
n

 b
a

n
k

in
g

 –
 E

E
3

8
0

, 
S

ta
n

fo
rd

, 
M

a
y

 2
0

1
1

 

Handling errors 

Handling errors in kernel operations 

• Arithmetic operations in Kernel designs have the capability of raising numeric 

exceptions. 

• Numeric exceptions cost extra logic on the device, so are disabled by default.  

• Enabling numeric exceptions is helpful during the design process to debug any 

numerical issues. 

• Numeric exceptions are raised in similar circumstances to a CPU but the Kernel always 

continues processing, raising a flag to indicate that a numeric exception has occurred.  

• For floating-point numbers, the type of numeric exceptions that can be raised closely 

follow the IEEE 754 standard.  

• For fixed-point numbers, overflow and divide-by-zero exceptions can be raised. 

• The following table summarises the errors supported by MaxCompiler: 

40 



S
c

a
le

 a
n

d
 c

o
m

p
le

x
it

y
 i
n

 b
a

n
k

in
g

 –
 E

E
3

8
0

, 
S

ta
n

fo
rd

, 
M

a
y

 2
0

1
1

 

Accuracy 
• MaxCompiler supports floating-point data streams both in IEEE 754 standard formats 

(half-, single- anddouble-precision) and with user-specified sizes of mantissa and 

exponent. 

• A floating-point type is parameterized with mantissa and exponent bit-widths in 

MaxCompiler using the function hwFloat: 

•  HWFloat hwFloat(int exponent bits, int mantissa bits) 

• Double precision is thus hwFloat(11, 53),with an 11 bit exponent and 53 bit 

mantissa. 

• As the exponent and mantissa can be defined at compile time, it is therefore possible 

to build bitstreams with varying degrees of accuracy as required.  

• This is useful, since double precision accuracy is not an absolute requirement 

throughout every part of a computation. 

• As accuracy is reduced, performance increases and FPGA resource use declines.  

• Having the ability to build bitstreams with varying degrees of accuracy is extremely 

useful, as lower precision bitstreams can be used for scenario analysis, where it can 

be acceptable to trade-off speed in favour of absolute accuracy.  

• The potential speedups can be as much as 20% for every decimal place of accuracy 

sacrificed. 

• Several lower accuracy bitstreams have been built for PV and can be run when as an 

when speed is preferred over accuracy. 

41 



S
c

a
le

 a
n

d
 c

o
m

p
le

x
it

y
 i
n

 b
a

n
k

in
g

 –
 E

E
3

8
0

, 
S

ta
n

fo
rd

, 
M

a
y

 2
0

1
1

 

Testing 

Test bench steps: 

• Code coverage – how much RTL has been simulated? 

• Statements – were all executed? 

• Branch – were all branches taken? 

• Condition – were all conditions tested? 

• Expression – were all parts of concurrent assignments tested? 

• Finite state machine – were all states and transitions tested? 

• Test planning – improve the speed of verification – have a plan! 

• Assertions – catching bugs at source 

• Use of the assert statement 

• Multi-cycle assertions 

• Placing assertions 

• Transaction-level Simulation – create tests and check results 

• Self-checking test bench -  automation of transaction-level testing 

• Automatic stimulus - 

• Functional coverage 

42 



S
c

a
le

 a
n

d
 c

o
m

p
le

x
it

y
 i
n

 b
a

n
k

in
g

 –
 E

E
3

8
0

, 
S

ta
n

fo
rd

, 
M

a
y

 2
0

1
1

 

Debugging 
• The primary tool for debugging kernels in simulation is a watch.  

• Watches allow the developer to see what is going  on inside the kernel by tracking 
the value of any HWVar that has been tagged for watch during every cycle that the 

kernel is running. 

• Debugging a kernel involves adding the watch method to any number of target 

streams. 

• Debug output is generated by running the target kernel in simulation mode, which 

causes a .csv file to be generated containing data for every variable upon which a 

watch has been placed, e.g. 

 

 

 

 

 

 

 

• Recall that FPGAs are statically scheduled, so there is no need for dynamic 

debugging, so .csv output is adequate for finding and fixing bugs. 

HWVar x = io.input(”x”, hwFloat(8, 24)); 

x.watch(”x”) ; 

// Data 

HWVar x prev = stream.offset(x, −1); 

HWVar x next = stream.offset(x, 1); 

43 



S
c

a
le

 a
n

d
 c

o
m

p
le

x
it

y
 i
n

 b
a

n
k

in
g

 –
 E

E
3

8
0

, 
S

ta
n

fo
rd

, 
M

a
y

 2
0

1
1

 

Code validation 

44 

One of the concerns raised around migrating models to work on FPGAs is the degree to 

which the resulting calculation is an accurate representation of the original model. 

Assume that we can measure the predictive error of the migrated code like this: 

 

 

 
eciseoteus

oteusFPGA

FPGAC

yye

yye

yye

eeee

PrPr3

Pr2

1

321











Confirming e1 is small is fundamental 

Confirming e2 is small is verification problem 

Confirming e3 is small is a validation problem 

Then the remaining concern is therefore uncertainty quantification: 

Test 
 

Test 
 

Test! 

C++ code 

Characterise input uncertainty 

Characterise output uncertainty 

Refine using repeated data 

comparison 

FPGA code 

Statically scheduled 

Repeated unit tests & runs 

Reliability metrics based on 

chosen precision 

Forward & 

backward testing 

& prediction 



S
c

a
le

 a
n

d
 c

o
m

p
le

x
it

y
 i
n

 b
a

n
k

in
g

 –
 E

E
3

8
0

, 
S

ta
n

fo
rd

, 
M

a
y

 2
0

1
1

 

Acceleration of tranche risk 

• Most advanced thread of acceleration work – ~2 years effort. 

• Migration of the production model (base correlation with stochastic recovery) used to 

price and calculate risk for: vanilla tranches, bespoke tranches, n-th to default and 

CDO2 (together accounting for ~98% of compute). 

• Currently a single FPGA prices a single complex trade 134x faster than a single CPU. 

• End-to-end time to price global credit hybrids portfolio once, reduced to ~125secs with 

pure FPGA time of ~2 secs to price ~30,000 tranches and total compute time of ~30 

secs. 

• End to end time for pointwise credit deltas on global credit hybrids portfolio reduced to 

~238 secs with pure FPGA time of ~12 secs, using a 40-node FPGA machine. 

• Running multiple trading/risk scenarios for desk (example shown below of 5 multi-name 

default scenarios affecting 122 names in different combinations) – total end-to-end time 

of ~320 secs, results accurate to within $5 across global portfolio. Not previously 

possible to run such scenarios multiple times within a single trading day. 

45 



S
c

a
le

 a
n

d
 c

o
m

p
le

x
it

y
 i
n

 b
a

n
k

in
g

 –
 E

E
3

8
0

, 
S

ta
n

fo
rd

, 
M

a
y

 2
0

1
1

 

Acceleration of tranche risk 

• We can also run complex scenarios such as one that defaults all of the 

2,000+ names in the portfolio (ordered in terms of expected loss) in 

increasing groups (i.e. name 1, names 1 + 2, names 1 + 2 + 3 etc…) and 

run it for both market and zero recovery (a total of 4,032 PV jobs) – never 

previously computationally feasible using standard Intel cores 

• The most interesting result from the exercise is that we are gaining an 

understanding of the shape of the curve that describes the performance 

trade off as the following graph shows… 

 

Time in seconds per PV run

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

0 10 20 30 40 50 60

Number of PV jobs per runa

E
n

d
 t

o
 e

n
d

 t
im

e

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

F
P

G
A

 u
ti

li
s
a
ti

o
n

 %

FPGA Compute

End2End

FPGA

Utilisation

46 

Number of

Scenarios FPGA Compute End2End

FPGA

Utilisation

1 2.57 125.21           25.99%

5 2.35 98.02             38.54%

10 2.06 66.68             56.24%

20 1.86 30.88             62.63%

50 1.80 28.27             91.97%



S
c

a
le

 a
n

d
 c

o
m

p
le

x
it

y
 i
n

 b
a

n
k

in
g

 –
 E

E
3

8
0

, 
S

ta
n

fo
rd

, 
M

a
y

 2
0

1
1

 

• One of the key strategic results of JP Morgan‟s work with 

Maxeler is that JP Morgan has adapted its technology 

strategy from one of “build or buy” to one of “build or buy 

or acquire” 

• JP Morgan has taken a 20% stake in Maxeler – a key 

example of its commitment of using innovation to achieve 

strategic competitive advantage 

Postscript 

47 



S
c

a
le

 a
n

d
 c

o
m

p
le

x
it

y
 i
n

 b
a

n
k

in
g

 –
 E

E
3

8
0

, 
S

ta
n

fo
rd

, 
M

a
y

 2
0

1
1

 Q & A 

48 

Any questions? 


