Acknowledgements

This talk is based on:

Doc, What Are My Chances?

Joe Marasco, Ron Doerfler and Leif Roschier

(Pebble Beach) (Chicago) (Helsinki)

For more information, see:

comap.com (UMAP Journal publisher)

modernnomograms.com (nomograms)
Medicine Today

- Intensive use of high-tech
 - Diagnostic imaging
 - Surgical advances (e.g. laparoscopy)
 - Robotics (e.g. daVinci)
 - Genome sequencing
 - Pharmaceuticals

- Science and mathematics lagging
 - Evidence-based medicine (1990)
 - Education of clinicians
 - Patient empowerment
Road Map of the Talk

Medical Diagnostics

Bayes’ Theorem Nomography
Road Map of the Talk

Medical Diagnostics
It’s All About Probabilities

Bayes’ Theorem
Nomography
Road Map of the Talk

Medical Diagnostics
It’s All About Probabilities

Bayes’ Theorem
Math for Updating Probabilities Based on Test Results

\[P_{\text{OLD}} + \text{Test} = P_{\text{NEW}} \]
Road Map of the Talk

Medical Diagnostics
It’s All About Probabilities

Bayes’ Theorem
Math for Updating Probabilities
Based on Test Results
\[P_{OLD} + \text{Test} = P_{NEW} \]

Nomography
Graphical Technique for Doing the Math
Road Map of the Talk

Medical Diagnostics
It’s All About Probabilities

Bayes’ Theorem
Math for Updating Probabilities Based on Test Results
\[P_{OLD} + \text{Test} = P_{NEW} \]

Nomography
Graphical Technique for Doing the Math

\[P_{NEW}, \text{Test}, P_{OLD} \]
Example: PSA Screening

We agree
- Screening misses 83% with prostate cancer
 - 15 false negatives out of 18 total
- > 50% negative biopsy rate
 - 5 false alarms out of 8 positives

Wrong cutoff?
- PSA = 4 is best trade-off

80% “overall accuracy” misleading

Test characterization problem
Back to Square One

- Test characterization depends on usage
- Test only one part of diagnostic protocol
- Reasonable diagnostic protocol
 - Keeps physician in the loop
 - Employs scientific method
 - Uses historical data
 - Simple
 - Easy to explain
- Candidate: Bayes’ Theorem
The Scientific Method

1. Initial probability theory is valid
2. Do experiment
3. Result either tends to confirm or refute theory
4. **Update**: New probability theory is valid depends on initial probability, experimental result and *strength* of experiment
5. New probability becomes the initial probability for next cycle
6. Go to 1 (iterative approach)

Diagnostic Protocol

1. Doctor’s estimate of probability of disease based on history, symptoms, examination, etc.
2. Perform diagnostic test
3. Test comes back positive or negative
4. **Update**: New estimate of probability of disease based on prior estimate, test result and *test strength*
5. New estimate is starting point for next test, if necessary
6. Go to 2, if necessary
Pretest Probability Below TT

Only a Positive Test Result Helps

Test too weak

Test Strong Enough

Probability of Disease

0 % 100 %

Pretest Test Posttest Pretest Test Posttest

Treatment Threshold
Only a **Negative** Test Result Helps

Pretest Probability Above TT

- **Test too weak**
 - Pretest: 100%
 - Test: -
 - Posttest: 100%

- **Test Strong Enough**
 - Pretest: 100%
 - Test: -
 - Posttest: 0%
These two numbers, called Likelihood Ratios (LR), completely characterize the test.
Waltzing with Bayes
1. Pretest Probability \(\rightarrow\) (algebra) \(\rightarrow\) Pretest Odds
2. Apply Bayes: Posttest Odds = Pretest Odds \times\ LR
3. Posttest Odds \(\rightarrow\) (algebra) \(\rightarrow\) Posttest Probability

Many tests specified by sensitivity and specificity
- (Sensitivity, Specificity) \(\rightarrow\) (algebra) \(\rightarrow\) (LR+, LR-)

Nomograms eliminate mechanical problem
Nomography in a Nutshell

- Developed in 1890’s by Maurice d'Ocagne
- Bespoke paper Slide Rule (w/o slide)
- Algebraic relationships rendered geometrically
- Provides insight through visualization
- Draw straight line from one scale to another; answer is found where line intersects 3rd scale
- 75-year run in engineering and medicine
- Went out of fashion with advent of pocket calculators and computers (circa 1970’s)
- Very easy to use, can be very difficult to craft
Enter Dr. Fagan

- Arrives end of nomographic era
- Letter to NEJM, July 1975
- Elegant
- Minimalist
- Became “Fagan Nomogram”
- Cited hundreds of times over the following 35 years
- Not widely used
- Not improved upon
- Until 2011

↩ Please respect NEJM’s copyright
A New Bayes’ Nomogram
1. This test has an LR+ = 2.8

2. Absent any other info, Pretest Probability = 18%

3. Assume test comes back positive

4. Find 18% on Pretest Probability on scale at bottom

5. Find 2.8 on LR+ scale in middle

6. Determine Posttest Probability of 38% on scale at top

Conclusion: If treatment threshold is 50%, this test is not useful for routine screening
1. This test has
 - Sensitivity = 0.17
 - Specificity = 0.94
2. Locate 0.17 on lower right ellipse (blue)
3. Locate 0.94 on upper left ellipse (blue)
4. Connect these two points
5. LR+ value is now determined: 2.8
6. Proceed as before

Conclusion: If treatment threshold is 50%, this test is not useful for routine screening
Similar analysis for LR-
Nomogram has other scales to determine all parameters from the 2x2 matrix
In practice, sensitivity and specificity are the most commonly listed parameters
Test parameters are cohort-dependent and evolve over time as more data are obtained
Thus protocol is doubly-Bayesian
- Individual’s posttest probability is a Bayesian update based on test parameters
- Over time, new data cause a Bayesian update on the test parameters themselves
There is a second new nomogram for rare diseases (very low pretest probabilities requiring high LR+)
Problem: Construction of good nomograms is non-trivial

Solution: PyNomo

- Python package for creating nomograms
- **Input:** Python script describing all aspects of the relationships and the display
- **Output:** Camera-ready PDF or EPS
- Vector graphic precision
- Written by Leif Roschier
- Open source
- Get information at pynomo.org

All our nomograms were created using PyNomo

Ask me about iPad support
THANK YOU

modernnomograms.com
pynomo.org
joe@barbecuejoe.com