CityHash: Fast Hash Functions for Strings

Geoff Pike
(joint work with Jyrki Alakuijala)

Google

http://code.google.com/p/cityhash/

Introduction

- Who?
- What?
- When?
- Where?
- Why?

Outline

Introduction

A Biased Review of String Hashing
Murmur or Something New?
Interlude: Testing

CityHash
Conclusion

Recent activity

- SHA-3 winner was announced last month
- Spooky version 2 was released last month
- MurmurHash3 was finalized last year
- CityHash version 1.1 will be released this month

In my backup slides you can find ...

- My notation
- Discussion of cyclic redundancy checks
- What is a CRC?
- What does the cre32q instruction do?

Traditional String Hashing

- Hash function loops over the input
- While looping, the internal state is kept in registers
- In each iteration, consume a fixed amount of input

Traditional String Hashing

- Hash function loops over the input
- While looping, the internal state is kept in registers
- In each iteration, consume a fixed amount of input
- Sample loop for a traditional byte-at-a-time hash:

```
for (int i = O; i < N; i++) {
    state = Combine(state, Bi}
    state = Mix(state)
}
```


Two more concrete old examples (loop only)

$$
\begin{gathered}
\text { for (int } i=0 ; i<N ; i++) \\
\text { state }=\rho_{-5}(\text { state }) \oplus B_{i}
\end{gathered}
$$

Two more concrete old examples (loop only)

$$
\begin{gathered}
\text { for (int } i=0 ; i<N ; i++) \\
\text { state }=\rho_{-5}(\text { state }) \oplus B_{i}
\end{gathered}
$$

```
for (int \(i=0 ; i<N ; i++)\)
    state \(=33 \cdot\) state \(+B_{i}\)
```


A complete byte-at-a-time example

```
// Bob Jenkins circa 1996
int state = 0
for (int i = O; i < N; i++) {
    state = state+ Bi
    state = state + }\mp@subsup{\sigma}{-10}{(state)
    state = state }\oplus\mp@subsup{\sigma}{6}{}(\mathrm{ state)
}
state = state + \sigma-3(state)
state = state\oplus \sigma11 (state)
state = state + \sigma -15 (state)
return state
```


A complete byte-at-a-time example

```
// Bob Jenkins circa 1996
int state = 0
for (int i = O; i < N; i++) {
    state = state + Bi
    state = state + \sigma-10(state)
    state = state }\oplus\mp@subsup{\sigma}{6}{}(\mathrm{ state )
}
state = state + \sigma-3(state)
state = state }\oplus\mp@subsup{\sigma}{11}{}(\mathrm{ state)
state = state + \sigma-15 (state)
return state
```

What's better about this? What's worse?

What Came Next-Hardware Trends

- CPUs generally got better
- Unaligned loads work well: read words, not bytes
- More registers
- SIMD instructions
- CRC instructions
- Parallelism became more important
- Pipelines
- Instruction-level parallelism (ILP)
- Thread-level parallelism

What Came Next—Hash Function Trends

- People got pickier about hash functions
- Collisions may be more costly
- Hash functions in libraries should be "decent"
- More acceptance of complexity
- More emphasis on diffusion

Jenkins' mix

Also around 1996, Bob Jenkins published a hash function with a 96 -bit input and a 96 -bit output. Pseudocode with 32 -bit registers:

$$
\begin{aligned}
& a=a-b ; \quad a=a-c ; \quad a=a \oplus \sigma_{13}(c) \\
& b=b-c ; b=b-a ; \quad b=b \oplus \sigma_{-8}(a) \\
& c=c-a ; \quad c=c-b ; \quad c=c \oplus \sigma_{13}(b) \\
& a=a-b ; \quad a=a-c ; \quad a=a \oplus \sigma_{12}(c) \\
& b=b-c ; b=b-a ; b=b \oplus \sigma_{-16}(a) \\
& c=c-a ; \quad c=c-b ; \quad c=c \oplus \sigma_{5}(b) \\
& a=a-b ; \quad a=a-c ; \quad a=a \oplus \sigma_{3}(c) \\
& b=b-c ; b=b-a ; b=b \oplus \sigma_{-10}(a) \\
& c=c-a ; c=c-b ; \quad c=c \oplus \sigma_{15}(b)
\end{aligned}
$$

Jenkins' mix

Also around 1996, Bob Jenkins published a hash function with a 96 -bit input and a 96 -bit output. Pseudocode with 32 -bit registers:

$$
\begin{array}{rlrl}
a=a-b ; & a=a-c ; & a=a \oplus \sigma_{13}(c) \\
b=b-c ; & b=b-a ; & b=b \oplus \sigma_{-8}(a) \\
c=c-a ; & c=c-b ; & c=c \oplus \sigma_{13}(b) \\
a=a-b ; & a=a-c ; & a=a \oplus \sigma_{12}(c) \\
b=b-c ; & b=b-a ; & b=b \oplus \sigma_{-16}(a) \\
c=c-a ; & c=c-b ; & c=c \oplus \sigma_{5}(b) \\
c=a-b ; & a=a-c ; & a=a \oplus \sigma_{3}(c) \\
a=b-c ; & b=b-a ; & b=b \oplus \sigma_{-10}(a) \\
b=b-c & =c+c=c \oplus \sigma_{15}(b)
\end{array}
$$

Thorough, but pretty fast!

Jenkins' mix-based string hash

Given mix (a, b, c) as defined on the previous slide, pseudocode for string hash:

```
uint32 a = ...
uint32 b = ...
uint32 c = ...
int iters = \N/12\rfloor
for (int i = 0; i < iters; i++) {
    a=a + W3i
    b=b+W
    c = c + W W3i+2
    mix(a, b, c)
}
etc.
```


Modernizing Google's string hashing practices

- Until recently, most string hashing at Google used Jenkins' techniques
- Some in the "32-bit" style
- Some in the "64-bit" style, whose mix is $4 / 3$ times as long
- We saw Austin Appleby's 64-bit Murmur2 was faster and considered switching

Modernizing Google's string hashing practices

- Until recently, most string hashing at Google used Jenkins' techniques
- Some in the "32-bit" style
- Some in the "64-bit" style, whose mix is $4 / 3$ times as long
- We saw Austin Appleby's 64-bit Murmur2 was faster and considered switching
- Launched education campaign around 2009
- Explain the options; give recommendations
- Encourage labelling: "may change" or "won't"

Quality targets for string hashing

There are roughly four levels of quality one might seek:

- quick and dirty
- suitable for a library
- suitable for fingerprinting
- secure

Quality targets for string hashing

There are roughly four levels of quality one might seek:

- quick and dirty
- suitable for a library
- suitable for fingerprinting
- secure

Is Murmur2 good for a library? for fingerprinting? both?

Murmur2 preliminaries

First define two subroutines:
ShiftMix(a) $=a \oplus \sigma_{47}(a)$

Murmur2 preliminaries

First define two subroutines:
ShiftMix(a) $=a \oplus \sigma_{47}(a)$
and
TailBytes $(N)=\sum_{i=1}^{N \bmod 8} 256^{(N \bmod 8)-i} \cdot B_{N-i}$

Murmur2

```
uint64 k = 14313749767032793493
int iters \(=\lfloor N / 8\rfloor\)
uint64 hash \(=\) seed \(\oplus N k\)
for (int \(i=0 ; i<i t e r s ; i++)\)
    hash \(=\left(\right.\) hash \(\left.\oplus\left(\operatorname{ShiftMix}\left(W_{i} \cdot k\right) \cdot k\right)\right) \cdot k\)
if ( \(N \bmod 8>0\) )
    hash \(=(\) hash \(\oplus\) TailBytes \((N)) \cdot k\)
return ShiftMix(ShiftMix(hash)•k)
```


Murmur2 Strong Points

- Simple
- Fast (assuming multiplication is fairly cheap)
- Quality is quite good

Questions about Murmur2 (or any other choice)

- Could its speed be better?
- Could its quality be better?

Murmur2 Analysis

Inner loop is:

$$
\begin{aligned}
& \text { for (int } i=0 ; i<i t e r s ; i++) \\
& \text { hash }=\left(\text { hash } \oplus f\left(W_{i}\right)\right) \cdot k
\end{aligned}
$$

where f is "Mul-ShiftMix-Mul"

Murmur2 Speed

- ILP comes mostly from parallel application of f
- Cost of TailBytes(N) can be painful for $N<60$ or so

Murmur2 Quality

- f is invertible
- During the loop, diffusion isn't perfect

Testing

Common tests include:

- Hash a bunch of words or phrases
- Hash other real-world data sets
- Hash all strings with edit distance <= d from some string
- Hash other synthetic data sets
- E.g., 100-word strings where each word is "cat" or "hat"
- E.g., any of the above with extra space
- We use our own plus SMHasher

Testing

Common tests include:

- Hash a bunch of words or phrases
- Hash other real-world data sets
- Hash all strings with edit distance <= d from some string
- Hash other synthetic data sets
- E.g., 100-word strings where each word is "cat" or "hat"
- E.g., any of the above with extra space
- We use our own plus SMHasher
- avalanche

Avalanche (by example)

Suppose we have a function that inputs and outputs 32 bits. Find M random input values. Hash each input value with and without its $j^{\text {th }}$ bit flipped. How often do the results differ in their $k^{\text {th }}$ output bit?

Avalanche (by example)

Suppose we have a function that inputs and outputs 32 bits. Find M random input values. Hash each input value with and without its $j^{\text {th }}$ bit flipped. How often do the results differ in their $k^{\text {th }}$ output bit?

Ideally we want "coin flip" behavior, so the relevant distribution has mean $M / 2$ and variance $1 / 4 M$.

64x64 avalanche diagram: $f(x)=x$

64x64 avalanche diagram: $f(x)=k x$

64×64 avalanche diagram: ShiftMix

64x64 avalanche diagram: $\operatorname{ShiftMix(X)\cdot k}$

64x64 avalanche diagram: ShiftMix(kx) k

64×64 avalanche diagram: $f(x)=C R C(k x)$

The CityHash Project

Goals:

- Speed (on Google datacenter hardware or similar)
- Quality
- Excellent diffusion
- Excellent behavior on all contributed test data
- Excellent behavior on basic synthetic test data
- Good internal state diffusion-but not too good, cf. Rogaway's Bucket Hashing

Portability

For speed without total loss of portability, assume:

- 64-bit registers
- pipelined and superscalar
- fairly cheap multiplication
- cheap $+,-, \oplus, \sigma, \rho, \beta$
- cheap register-to-register moves

Portability

For speed without total loss of portability, assume:

- 64-bit registers
- pipelined and superscalar
- fairly cheap multiplication
- cheap $+,-, \oplus, \sigma, \rho, \beta$
- cheap register-to-register moves
- $a+b$ may be cheaper than $a \oplus b$
- $a+c b+1$ may be fairly cheap for $c \in\{0,1,2,4,8\}$

Branches are expensive

Is there a better way to handle the "tails" of short strings?

Branches are expensive

Is there a better way to handle the "tails" of short strings?

How many dynamic branches are reasonable for hashing a 12-byte input?

Branches are expensive

Is there a better way to handle the "tails" of short strings?

How many dynamic branches are reasonable for hashing a 12-byte input?

How many arithmetic operations?

CityHash64 initial design (2010)

- Focus on short strings
- Perhaps just use Murmur2 on long strings
- Use overlapping unaligned reads
- Write the minimum number of loops: 1
- Focus on speed first; fix quality later

The CityHash64 function: overall structure

The CityHash64 function: overall structure

```
if ( \(N<=32\) )
    if ( \(N<=16\) )
        if ( \(N<=8\) )
        else
        else
            -••
else if ( \(N<=64\) ) \{
    // Handle \(33<=N<=64\)
\} else \{
        // Handle \(N\) > 64
        int iters \(=\lfloor N / 64\rfloor\)
\}
```


The CityHash64 function (2012): preliminaries

Define $\alpha(u, v, m)$:
let $a=u \oplus v$
$a^{\prime}=\operatorname{ShiftMix}(a \cdot m)$
$a^{\prime \prime}=a^{\prime} \oplus v$
$a " \prime=\operatorname{ShiftMix}\left(a^{\prime \prime} \cdot m\right)$
in

$$
a " ' \cdot m
$$

The CityHash64 function (2012): preliminaries

Define $\alpha(u, v, m)$:
let $a=u \oplus v$
$a^{\prime}=\operatorname{ShiftMix}(a \cdot m)$
$a^{\prime \prime}=a^{\prime} \oplus v$
$a^{\prime \prime \prime}=\operatorname{ShiftMix}\left(a^{\prime \prime} \cdot m\right)$
in

$$
a " \cdot m
$$

Also, k_{0}, k_{1}, and k_{2} are primes near 2^{64}, and K is $k_{2}+2 N$.

CityHash64: $1<=N<=3$

$$
\text { let } \begin{aligned}
a & =B_{0} \\
b & =B_{\lfloor N / 2\rfloor} \\
c & =B_{N-1} \\
y & =a+256 b \\
z & =N+4 c
\end{aligned}
$$

in
$\operatorname{ShiftMix}\left(\left(y \cdot k_{2}\right) \oplus\left(z \cdot k_{0}\right)\right)$

CityHash64: 4 <= $N<=8$
$\alpha\left(N+4 W_{0}^{32}, W_{-1}^{32}, K\right)$

CityHash64: 9 <= N <= 16

$$
\text { let } \begin{aligned}
a & =W_{0}+k_{2} \\
b & =W_{-1} \\
c & =\rho_{37}(b) \cdot K+a \\
d & =\left(\rho_{25}(a)+b\right) \cdot K \\
\text { in } \quad & \alpha(c, d, K)
\end{aligned}
$$

CityHash64: $17<=N<=32$

$$
\begin{array}{ll}
\text { let } & \begin{array}{l}
a=W_{0} \cdot k_{1} \\
\\
b \\
\\
\\
c=W_{1} \\
\\
\\
d=W_{-1} \cdot K \\
\text { in } \\
\\
\\
\\
\alpha\left(\rho_{43}(a+b)+\rho_{20}(c)+d, a+\rho_{18}\left(b+k_{2}\right)+c, K\right)
\end{array}
\end{array}
$$

CityHash64: $33<=N<=64$

$$
\text { let } \begin{aligned}
a & =W_{0} \cdot k_{2} \\
e & =W_{2} \cdot k_{2} \\
f & =W_{3} \cdot 9 \\
h & =W_{-2} \cdot K \\
u & =\rho_{43}\left(a+W_{-1}\right)+9\left(\rho_{30}\left(W_{1}\right)+c\right) \\
v & =a+W_{-1}+f+1 \\
w & =h+\beta((u+v) \cdot K) \\
x & =\rho_{42}(e+f)+W_{-3}+\beta\left(W_{-4}\right) \\
y & =\left(\beta((v+w) \cdot K)+W_{-1}\right) \cdot K \\
z & =e+f+W_{-3} \\
r & =\beta((x+z) \cdot K+y)+W_{1} \\
t & =\operatorname{ShiftMix}\left((r+z) \cdot K+W_{-4}+h\right) \\
\text { in } \quad & \\
t K & +x
\end{aligned}
$$

Evaluation for \mathbf{N} <= 64

Evaluation for N <= 64

- CityHash64 is about $1.5 x$ faster than Murmur2 for $N<=64$
- Quality meets targets (bug reports are welcome)
- Simplifying it would be nice

Evaluation for N <= 64

- CityHash64 is about $1.5 x$ faster than Murmur2 for $N<=64$
- Quality meets targets (bug reports are welcome)
- Simplifying it would be nice
- Key lesson: Don't loop over bytes
- Key lesson: Understand the basics of machine architecture
- Key lesson: Know when to stop

Next steps

Arguably we should have written CityHash32 next. That's still not done.

Instead, we worked on 64-bit hashes for $N>64$, and 128-bit hashes.

CityHash64 for $N>64$

The one loop in CityHash64:

- 56 bytes of state
- 64 bytes consumed per iteration
- 7 rotates, 4 multiplies, 1 xor, about 36 adds (??)
- influenced by mix and Murmur2

128-bit CityHash variants

- CityHash128
- same loop body, manually unrolled
- slightly faster for large N
- CityHashCrc128
- totally different function
- uses CRC instruction, but isn't a CRC
- faster still for large N

Evaluation for $N>64$

Evaluation for $N>64$

- CityHash64 is about 1.3 to 1.6x faster than Murmur2
- For long strings, the fastest CityHash variant is about $2 x$ faster than the fastest Murmur variant
- Quality meets targets (bug reports are welcome)
- Jenkins' Spooky is a strong competitor

My recommendations

For hash tables or fingerprints:

	Nehalem, Westmere,	similar	other
	Sandy Bridge, etc.	CPUs	CPUs
small N	CityHash	CityHash	TBD
large N	CityHash	Spooky or CityHash	TBD

My recommendations

For hash tables or fingerprints:

	Nehalem, Westmere,	similar	other
	Sandy Bridge, etc.	CPUs	CPUs
small N	CityHash	CityHash	TBD
large N	CityHash	Spooky or CityHash	TBD

For quick-and-dirty hashing: Start with the above

Future work

- CityHash32
- Big Endian
- SIMD

The End

Backup Slides

Notation

$$
\begin{aligned}
N & =\text { the length of the input (bytes) } \\
a \oplus b & =\text { bitwise exclusive-or } \\
a+b & =\text { sum (usually mod } 2^{64} \text {) } \\
a \cdot b & \left.=\text { product (usually mod } 2^{64}\right) \\
\sigma_{n}(a) & =\text { right shift } a \text { by } n \text { bits } \\
\sigma_{-n}(a) & =\text { left shift } a \text { by } n \text { bits } \\
\rho_{n}(a) & =\text { right rotate } a \text { by } n \text { bits } \\
\rho_{-n}(a) & =\text { left rotate } a \text { by } n \text { bits } \\
\beta(a) & =\text { byteswap } a
\end{aligned}
$$

More Notation

$B_{i}=$ the $i^{\text {th }}$ byte of the input (counts from 0)
 $w_{i}^{b}=$ the $i^{\text {th }} b$-bit word of the input

More Notation

$B_{i}=$ the $i^{\text {th }}$ byte of the input (counts from 0)
$W_{i}^{b}=$ the $i^{\text {th }} b$-bit word of the input
$W_{-1}^{b}=$ the last b-bit word of the input
$w_{-2}^{b}=$ the second-to-last b-bit word of the input

Cyclic Redundancy Check (CRC)

The commonest explanation of a CRC is in terms of polynomials whose coefficients are elements of GF(2).

Cyclic Redundancy Check (CRC)

The commonest explanation of a CRC is in terms of polynomials whose coefficients are elements of GF(2). In GF(2):

0 is the additive identity,
1 is the multiplicative identity, and
$1+1=0+0=0$.

CRC, part 2

Sample polynomial:

$$
p=x^{32}+x^{27}+1
$$

CRC, part 3

We can use p to define an equivalence relation: We'll say q and r are equivalent iff they differ by a polynomial times p.

CRC, part 4

Theorem: The equivalence relation has $2^{\operatorname{Degree}(p)}$ elements.

CRC, part 4

Theorem: The equivalence relation has $2^{\operatorname{Degree}(p)}$ elements.
Lemma: if Degree $(p)=\operatorname{Degree}(q)>0$ then Degree $(p+q)<\operatorname{Degree}(p)$ and, if not, $\operatorname{Degree}(p+q)=\max (\operatorname{Degree}(p), \operatorname{Degree}(q))$

CRC, part 4

Theorem: The equivalence relation has $2^{\operatorname{Degree}(p)}$ elements.
Lemma: if Degree $(p)=\operatorname{Degree}(q)>0$ then Degree $(p+q)<\operatorname{Degree}(p)$ and, if not, $\operatorname{Degree}(p+q)=\max (\operatorname{Degree}(p)$, Degree $(q))$

Observation: There are $2^{\text {Degree }(p)}$ polynomials with degree less than Degree (p), none equivalent.

CRC, part 5

Observation: Any polynomial with degree $>=\operatorname{Degree}(p)$ is equivalent to a lower degree polynomial.

CRC, part 5

Observation: Any polynomial with degree $>=\operatorname{Degree}(p)$ is equivalent to a lower degree polynomial.

Example: What is a degree $<=31$ polynomial equivalent to x^{50} ?

CRC, part 5

Observation: Any polynomial with degree $>=\operatorname{Degree}(p)$ is equivalent to a lower degree polynomial.

Example: What is a degree $<=31$ polynomial equivalent to x^{50} ?
$\operatorname{Degree}\left(x^{50}\right)-\operatorname{Degree}(p)=18$; therefore $x^{50}-x^{18} \cdot p$ has degree less than 50.

CRC, part 5

Observation: Any polynomial with degree $>=\operatorname{Degree}(p)$ is equivalent to a lower degree polynomial.

Example: What is a degree $<=31$ polynomial equivalent to x^{50} ?
Degree $\left(x^{50}\right)-\operatorname{Degree}(p)=18$; therefore $x^{50}-x^{18} \cdot p$ has degree less than 50.

$$
\begin{aligned}
x^{50}-x^{18} \cdot p & =x^{50}-x^{18} \cdot\left(x^{32}+x^{27}+1\right) \\
& =x^{50}-\left(x^{50}+x^{45}+x^{18}\right) \\
& =x^{45}+x^{18}
\end{aligned}
$$

CRC, part 6

Applying the same idea repeatedly will lead us to the lowest degree polynomial that is equivalent to x^{50}.

CRC, part 6

Applying the same idea repeatedly will lead us to the lowest degree polynomial that is equivalent to x^{50}.

The result:

$$
x^{50} \equiv x^{30}+x^{18}+x^{13}+x^{8}+x^{3}
$$

CRC, part 7

More samples:

$$
\begin{aligned}
x^{50} & \equiv x^{30}+x^{18}+x^{13}+x^{8}+x^{3} \\
x^{50}+1 & \equiv x^{30}+x^{18}+x^{13}+x^{8}+x^{3}+1 \\
x^{51} & \equiv x^{31}+x^{19}+x^{14}+x^{9}+x^{4} \\
x^{51}+x^{50} & \equiv x^{31}+x^{30}+x^{19}+x^{18}+x^{14}+x^{13}+x^{9}+x^{8}+x^{4}+x^{3} \\
x^{51}+x^{31} & \equiv x^{19}+x^{14}+x^{9}+x^{4}
\end{aligned}
$$

CRC in Practice

- There are thousands of CRC implementations
- We'll focus on those that use _mm_crc32_u64() or crc32q
- The inputs are a 32-bit number and a 64-bit number
- The output is a 32-bit number

What is crc32q?

crc32q for inputs u and v returns
$C(u$ xor $v)=F(E(D(u$ xor $v)))$.
$D(0)=0, D(1)=x^{95}, D(2)=x^{94}, D(3)=x^{95}+x^{94}, D(4)=$ x^{93}, \ldots
E maps a polynomial to the equivalent with lowest-degree.
$F(0)=0, F\left(x^{31}\right)=1, F\left(x^{30}\right)=2, F\left(x^{31}+x^{30}\right)=3, F\left(x^{29}\right)=$ $4, \ldots$

How is crc32q used?

C operates on 64 bits of input, so:

For a 64-bit input, use C (seed, u_{0}).

How is crc $32 q$ used?

C operates on 64 bits of input, so:
For a 64-bit input, use $C\left(\right.$ seed, $\left.u_{0}\right)$.
For a 128 -bit input, use $C\left(C\left(\right.\right.$ seed, $\left.\left.u_{0}\right), u_{1}\right)$.

How is crc $32 q$ used?

C operates on 64 bits of input, so:

For a 64-bit input, use C (seed, u_{0}).
For a 128-bit input, use $C\left(C\left(\right.\right.$ seed,$\left.\left.u_{0}\right), u_{1}\right)$.
For a 192-bit input, use $C\left(C\left(C\left(\right.\right.\right.$ seed, $\left.\left.\left.u_{0}\right), u_{1}\right), u_{2}\right)$.

C as matrix-vector multiplication

A 32×64 matrix times a 64×1 vector yields a 32×1 result.

C as matrix-vector multiplication

A 32×64 matrix times a 64×1 vector yields a 32×1 result.
The matrix and vectors contain elements of $\mathrm{GF}(2)$:

