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Textbook RSA

[Rivest Shamir Adleman 1977]

Public Key

N = pqmodulus
e encryption
exponent

Private Key

p,q primes
d decryption exponent
(d = e−1 mod (p− 1)(q− 1))

Encryption

public key = (N, e)
ciphertext = messagee mod N

message = ciphertext
d
mod N
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Textbook Diffie-Hellman

[Diffie Hellman 1976]

Public Parameters

G a group (e.g. Fp, or an elliptic curve)
g group generator

Key Exchange

ga
gb

gabgab



DSA/ECDSA Public Key

G group parameters
g group generator
y = gx

Private Key

x private key



Motivating question:

What does cryptography look like on a broad scale?

Methodology:

1. Collect cryptographic data (keys, signatures...)

2. Look for interesting things.



Data Collection



Collecting HTTPS data

(Heninger, Durumeric, Wustrow, Halderman 2012)

(Durumeric, Wustrow, Halderman 2013)

Methodology:

• Scan entire IPv4 space on port 443.

• Download HTTPS certificates from live hosts.

Open port Handshake RSA DSA ECDSA GOST

28,900,000 12,800,000 5,600,000 6,000 8 200

Scanning tools available at zmap.io, data at scans.io.

zmap.io
scans.io


SSH

(Heninger, Durumeric, Wustrow, Halderman 2012)

(Bos, Halderman, Heninger, Moore, Naehrig, Wustrow 2013)

Methodology:

• Scan entire IPv4 space on port 22.

• Download host public keys, signatures, Diffie-Hellman

key exchange.

Open port Handshake RSA DSA ECDSA GOST

23,000,000 12,000,000 10,900,000 9,900,000 1,200,000 114



PGP

(Lenstra, Hughes, Augier, Bos, Kleinjung, Wachter 2012)

PGP keys are used to

• sign and encrypt email

messages.

XKCD

Methodology:

• Download PGP key repository dump containing public

keys, signatures.

RSA keys DSA keys ElGamal keys

700,000 2,100,000 2,100,000



Bitcoin

(Bos, Halderman, Heninger, Moore, Naehrig, Wustrow 2013)

Bitcoin uses ECDSA.

Addresses are public keys, transactions

contain signatures.

Block chain is transferred to bitcoin clients.

Can also be downloaded in bulk.

August 2013:
keys transactions

15,291,112 22,159,078



Taiwan Citizen Digital Certificate Smartcards

(Bernstein, Chang, Cheng, Chou, Heninger, Lange, van Someren 2013)

Taiwan’s smart card IDs allow citizens to

• file income taxes,

• update car registrations,

• transact with government agencies,

• interact with companies (e.g.

Chunghwa Telecom) online.

March 2012: Collected 3,002,000 certificates (all using RSA

keys) from national LDAP directory.

2.3 million distinct 1024-bit RSA moduli, 700,000 2048-bit.



Cryptography relies on good randomness.

If you use bad randomness, an attacker might

be able to guess your private key.

End of story?



What could go wrong: Repeated keys

RSA Public Keys

N = pqmodulus
e encryption exponent
• Two hosts share e: not a problem.

• Two hosts share N: → both know private key of the
other.

Hosts share the same public and private keys, and can

decrypt and sign for each other.
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What could go wrong: Shared factors

If two RSA moduli share a common factor,

N1 = pq1 N2 = pq2

gcd(N1,N2) = p
You can factor both keys with GCD algorithm.

Time to factor

768-bit RSA modulus:

2.5 calendar years

[Kleinjung et al. 2010]

Time to calculate GCD

for 1024-bit RSA moduli:

15µs
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What could go wrong: Repeated DSA/ECDSA keys

DSA Public Key

G, g domain parameters
y = gx

Private Key

x private key

• Two hosts have same public key→ both know private
key of the other.



What could go wrong: Weak DSA/ECDSA signatures

Public Key

G, g domain parameters
y = gx

Private Key

x private key

DSA and ECDSA signatures contain a random nonce.

• DSA nonce known→ easily compute private key.

• DSA nonce reused to sign distinct messages→ easily
compute nonce.
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Should we expect to find key collisions in the wild?

Experiment: Compute GCD of each pair of M RSA moduli
randomly chosen from P primes.
What should happen? Nothing.

Prime Number Theorem:
∼ 10150 512-bit primes

Birthday bound:
Pr[nontrivial gcd] ≈ 1−e−2M2/P
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How to efficiently compute pairwise GCDs

Computing pairwise gcd(Ni,Nj) the naive way on all of the
RSA keys in the above datasets would take

15µs×
(
14× 106
2

)
pairs ≈ 1100 years

of computation time.

Algorithm from (Bernstein 2004)

A few hours for datasets.

Implementation available at

https://factorable.net.

N1N2N3N4

×

N4N3

×

N2N1

N1N2N3N4

mod N2
1 N2

2
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What does happen when we GCD all the keys?

Compute private keys for

• 64,081 HTTPS servers (0.50%).

• 2,459 SSH servers (0.03%).

• 2 PGP users (and a few hundred invalid keys).

• 103 Taiwanese citizens.
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What happens if we look for repeated DSA nonces?

Compute private keys for

• 105,728 (1.03%) of SSH DSA servers.

• 158 Bitcoin addresses.



What happens if we look for repeated keys?

> 60% of HTTPS and SSH hosts served non-unique
public keys.

HTTPS:

default certificates/keys:

670,000 hosts (5%)

low-entropy repeated keys:

40,000 hosts (0.3%)

SSH:

default or low-entropy keys:

1,000,000 hosts (10%)
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Classifying repeated keys

104

105

50 most repeated RSA SSH keys
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Devices
Hosting providers
Unknown/other



... only two of the factored https certificates were signed by

a CA, and both are expired. The web pages aren’t active.

Look at subject information for certificates:

CN=self-signed, CN=system generated, CN=0168122008000024
CN=self-signed, CN=system generated, CN=0162092009003221
CN=self-signed, CN=system generated, CN=0162122008001051
C=CN, ST=Guangdong, O=TP-LINK Technologies CO., LTD., OU=TP-LINK SOFT, CN=TL-R478+1145D5C30089/emailAddress=service@mail.com
C=CN, ST=Guangdong, O=TP-LINK Technologies CO., LTD., OU=TP-LINK SOFT, CN=TL-R478+139819C30089/emailAddress=service@mail.com
CN=self-signed, CN=system generated, CN=0162072011000074
CN=self-signed, CN=system generated, CN=0162122009008149
CN=self-signed, CN=system generated, CN=0162122009000432
CN=self-signed, CN=system generated, CN=0162052010005821
CN=self-signed, CN=system generated, CN=0162072008005267
C=US, O=2Wire, OU=Gateway Device/serialNumber=360617088769, CN=Gateway Authentication
CN=self-signed, CN=system generated, CN=0162082009008123
CN=self-signed, CN=system generated, CN=0162072008005385
CN=self-signed, CN=system generated, CN=0162082008000317
C=CN, ST=Guangdong, O=TP-LINK Technologies CO., LTD., OU=TP-LINK SOFT, CN=TL-R478+3F5878C30089/emailAddress=service@mail.com
CN=self-signed, CN=system generated, CN=0162072008005597
CN=self-signed, CN=system generated, CN=0162072010002630
CN=self-signed, CN=system generated, CN=0162032010008958
CN=109.235.129.114
CN=self-signed, CN=system generated, CN=0162072011004982
CN=217.92.30.85
CN=self-signed, CN=system generated, CN=0162112011000190
CN=self-signed, CN=system generated, CN=0162062008001934
CN=self-signed, CN=system generated, CN=0162112011004312
CN=self-signed, CN=system generated, CN=0162072011000946
C=US, ST=Oregon, L=Wilsonville, CN=141.213.19.107, O=Xerox Corporation, OU=Xerox Office Business Group,
CN=XRX0000AAD53FB7.eecs.umich.edu, CN=(141.213.19.107|XRX0000AAD53FB7.eecs.umich.edu)
CN=self-signed, CN=system generated, CN=0162102011001174
CN=self-signed, CN=system generated, CN=0168112011001015
CN=self-signed, CN=system generated, CN=0162012011000446
CN=self-signed, CN=system generated, CN=0162112011004041
CN=self-signed, CN=system generated, CN=0162112011000617
CN=self-signed, CN=system generated, CN=0162042011006791
CN=self-signed, CN=system generated, CN=0162072011005063
CN=self-signed, CN=system generated, CN=0162122008003402
CN=self-signed, CN=system generated, CN=0162072011005032
CN=self-signed, CN=system generated, CN=0162042011005343
CN=self-signed, CN=system generated, CN=0162012008002101
CN=self-signed, CN=system generated, CN=0162072008005492
CN=self-signed, CN=system generated, CN=0162092008000776
CN=self-signed, CN=system generated, CN=0162092008000852
CN=self-signed, CN=system generated, CN=0162112008000044



... only two of the factored https certificates were signed by
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Attributing SSL and SSH vulnerabilities to

implementations

Evidence strongly suggested widespread implementationproblems.
Clue #1: Vast majority of weak keys generated by network
devices:

• Juniper network security devices

• Cisco routers

• IBM server management cards

• Intel server management cards

• Innominate industrial-grade firewalls

• . . .

Identified devices from > 50
manufacturers
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OS entropy pool
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Hypothesis: Devices automatically

generate crypto keys on first boot.

• OS random number generator

may not have incorporated any

entropy when queried by

software.

Experimentally verified Linux

“boot-time entropy hole”

• Headless or embedded devices

may lack these entropy sources.
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Linux random number generators

/dev/random
“high-quality” randomness

blocks if insufficient entropy

available

/dev/urandom
pseudorandomness

never blocks

“As a general rule, /dev/urandom should be used for everythingexcept long-lived GPG/SSL/SSH keys.”—man random

random’s conservative blocking behavior is a usability
problem.

This results in many developers using urandom for
cryptography.



/* We’ll use /dev/urandom by default, since
/dev/random is too much hassle. If system developers
aren’t keeping seeds between boots nor getting any
entropy from somewhere it’s their own fault. */
#define DROPBEAR_RANDOM_DEV "/dev/urandom"



Generating vulnerable RSA keys in software

• Insufficiently random seeds for pseudorandom number

generator =⇒ we should see repeated keys.

prng.seed()
p = prng.random_prime()
q = prng.random_prime()
N = p*q

• We do:

• > 60% of hosts share keys
• At least 0.3% due to bad randomness.

• Repeated keys may be a sign that implementation is

vulnerable to a targeted attack.

But why do we see factorable keys?



Generating factorable RSA keys in software

prng.seed()
p = prng.random_prime()
prng.add_randomness()
q = prng.random_prime()
N = p*q

OpenSSL adds time in seconds

Insufficient randomness can lead to factorable keys.

8F 2B C1 13 EA F1 AA

8F 2B C1 13 EA 92 41

device 1

device 2

time=0 time=1

← generating p → ← generating q →

Experimentally verified OpenSSL generates factorable keys

in this situation.



Devices generating weak DSA signatures

Step 1: Low-entropy DSA key generation

Step 2: Low-entropy seed for PRNG generating signature

nonce.

Host 1

50

58

9

36

84

24

13

89

85

Host 2

84

24

13

89

85

68

52

69

47

Step 3: Two sequences in same state→ colliding nonces.



Investigating Taiwanese smartcard weak keys

Most common factor appears 46 times

c0000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
000000000000000000000000000002f9

which is the next prime after 2511 + 2510.
The next most common factor, repeated 7 times, is

c9242492249292499249492449242492
24929249924949244924249224929249
92494924492424922492924992494924
492424922492924992494924492424e5

Factored 80 more keys by extrapolating patterns.
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Why are government-certified smartcards

generating weak keys?

Best practices and standards in hardware random number

generation require

• designers to characterize entropy from source

• testing of the signal from the entropy source at run time

• post-processing by running output through

cryptographic hash function

These cards are clearly doing none of these things, even

though they claimed FIPS compliance.

Hypothesized failure:

• Hadware RNG has underlying weakness that causes

failure in some situations.

• Card software not operated in FIPS mode

=⇒ no testing or post-processing RNG output



Why are government-certified smartcards

generating weak keys?

Best practices and standards in hardware random number

generation require

• designers to characterize entropy from source

• testing of the signal from the entropy source at run time

• post-processing by running output through

cryptographic hash function

These cards are clearly doing none of these things, even

though they claimed FIPS compliance.

Hypothesized failure:

• Hadware RNG has underlying weakness that causes

failure in some situations.

• Card software not operated in FIPS mode

=⇒ no testing or post-processing RNG output



PGP: Implementation errors?

Why did GCD factor two PGP keys?

They were both > 10 years old.

Seems to have been a rare implementation error.



Bitcoin

Several explanations so far:

• Android Java RNG vulnerability publicized August 2013.

• Test implementations.

• Developer error in uncommon bitcoin implementations.

Bitcoin address 1HKywxiL4JziqXrzLKhmB6a74ma6kxbSDj has
stolen 59 bitcoins from weak addresses so far.

red = vulnerable keys



Disclosure for HTTPS and SSH vulnerabilities

• Wrote disclosures to 61 companies.

• 13 had Security Incident Response Team contact

information available.

• Received responses from 28.

• 13 told us they fixed the problem

• 5 informed us of security advisories

• Coordinated through US-CERT, ICS CERT, JP-CERT

• Linux kernel has been patched.

• Since publication in August 2012, 20% decrease in

number of hosts serving factorable RSA keys.



Disclosure for Taiwan ID card vulnerabilities

Disclosed vulnerability to Taiwan MOICA (Ministry of

Interior).

• Have replaced cards for users directly impacted by GCD

vulnerabilities.

• Promised to replace cards from particular vulnerable

batch.



Gallery of horrors



Debian RNG

Debian weak keys served on:

• 4,147 (0.03%) of HTTPS hosts

• 31,111 (0.34%) of RSA SSH hosts

• 22,030 (0.34%) of DSA SSH hosts







Distribution of prime factors

IBM Remote Supervisor Adapter II and Bladecenter Management Module

0

50

100

M
od

ul
us

fr
eq

ue
nc

y



Practical mitigations

Developers and manufacturers:
• Defense in depth: test, post-process, use multiple

sources of randomness.

• Gather entropy more aggressively, add hardware

sources.

• Seed devices with entropy at the factory.

• Generate keys on use rather than on boot.

CAs:
• Test for repeated, factorable, and other weak keys.

Users:
• Check against known weak keys. (See factorable.net)

• Replace default certificates.



Weak keys: Lessons

Systems:
• New insights from taking a macroscopic view

of crypto practice.

• Cryptographic entropy is hard to get right.

Cryptography:
• Need to design cryptosystems resilient to

random number generation problems.

(“Hedged” crypto)

Theory:
• Many interesting algorithmic problems related

to efficiently and obliviously mining data sets

for cryptographic vulnerabilities.
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