
TLS 1.3

Eric Rescorla

Mozilla

ekr@rtfm.com

TLS 1.3 1



Overview

• Background/Review of TLS

• Some problems with TLS 1.2

• Objectives for TLS 1.3

• What does TLS 1.3 look like?

• Open issues/schedule/etc.

TLS 1.3 2



What is Transport Layer Security?

• Probably the Internet’s most important security protocol

• Designed over 20 years ago by Netscape for Web transactions

– Back then, called Secure Sockets Layer

• But used for just about everything you can think of

– HTTP

– SSL-VPNs

– E-mail

– Voice/video

– IoT

• Maintained by the Internet Engineering Task Force

– We’re now at version 1.2

TLS 1.3 3



A Secure Channel

• Client connects to a known server (e.g., it has the domain name)

• Server is (almost) always authenticated by TLS

• Client may or may not be authenticated by TLS

– Often authenticated by the application, e.g., with a password

• After setup, data is encrypted and authenticated

– Though what “authenticated” means to the server is fuzzy

TLS 1.3 4



TLS Structure

• Handshake protocol

– Establish shared keys (typically using public key cryptography)

– Negotiate algorithms, modes, parameters

– Authenticate one or both sides

• Record protocol

– Carry individual messages

– Protected under symmetric keys

• This is a common design (SSH, IPsec, etc.)

TLS 1.3 5



TLS 1.2: RSA Handshake Skeleton

Client Server

ClientHello [Random] //
ServerHello [Random], Certificateoo

E(Ks, Master Secret), Finished=MAC(MS, Handshake) //
Finished=MAC(MS, Handshake)oo

oo Application data //

TLS 1.3 6



More on Negotiation

• ClientHello contains more than just random values

struct {

ProtocolVersion client_version;

Random random;

SessionID session_id;

CipherSuite cipher_suites<2..2^16-2>;

CompressionMethod compression_methods<1..2^8-1>;

select (extensions_present) {

case false:

struct {};

case true:

Extension extensions<0..2^16-1>;

};

} ClientHello;

TLS 1.3 7



Client Offers, Server Chooses

struct {

ProtocolVersion server_version;

Random random;

SessionID session_id;

CipherSuite cipher_suite;

CompressionMethod compression_method;

select (extensions_present) {

case false:

struct {};

case true:

Extension extensions<0..2^16-1>;

};

} ServerHello;

TLS 1.3 8



What’s in a Cipher Suite?

• Key Exchange (RSA, DHE, ECDHE, PSK, ...)

• Authentication (RSA, DSS, ECDSA, ...)

• Encryption (AES, Camellia, ...)

• MAC (MD5, SHA1, SHA256, ...)

TLS 1.3 9



TLS 1.2: Renegotiation

Client Server

ClientHello [Random] //
ServerHello [Random], Certificateoo
E(Ks, Master Secret), Finished //

Finishedoo

ClientHello [Random] //
ServerHello [Random], Certificateoo
E(Ks, Master Secret), Finished //

Finishedoo

oo Application data //

TLS 1.3 10



Renegotiation Attack [RRDO10]

Client Attacker Server

ClientHello [Random] //
ServerHello [Random], Certificateoo
E(Ks, Master Secret), Finished //

Finishedoo

oo POST /... //
ClientHello [Random] // ClientHello [Random] //

ServerHello [Random], Certificateoo ServerHello [Random], Certificateoo
E(Ks, Master Secret), Finished // E(Ks, Master Secret), Finished //

Finishedoo Finishedoo

oo POST /... Cookie=... //

TLS 1.3 11



Why is this bad?

• Attacker gets to splice their data to the client’s

• Example

– Attacker-controlled request +

– Client’s credentials

• This looks like a renegotiation to server

TLS 1.3 12



Renegotiation Info Extension [RFC5746]

• New extension in {Client,Server}Hello

– Client’s version contains its last Finished on this connection

– Server’s version contains last pair of Finished from this

connection

• If you’re not renegotiating with the same person you get a

mismatch

TLS 1.3 13



Uses for renegotiation (or, why can’t we just get rid

of it...)

• Conceal the client’s certificate

• Post-handshake client authentication

• Refresh the traffic keying material

TLS 1.3 14



TLS 1.2: Renegotiation for Client Authentication

ClientHello [Random] //
ServerHello [Random], Certificate, Sign(Ks, gs, ...)oo

gc, Finished //

Finishedoo

GET /secure... //

HelloRequestoo
ClientHello [Random] //

ServerHello [Random], Certificate, CertificateRequest, Sign(Ks, gs, ...)oo
gc, Certificate, Sign(Kc, ...), Finished //

Finishedoo

oo Response

TLS 1.3 15



Session Resumption

• “Public key” operations are comparatively expensive

– They used to be really expensive

• Solution: amortize this operation across multiple connections

TLS 1.3 16



Session Establishment

Client Server

ClientHello [Random, SessionID] //
ServerHello [Random, SessionID], Certificateoo

E(Ks, Master Secret), Finished //

Finishedoo

oo Application data //

TLS 1.3 17



Session Resumption

Client Server

ClientHello [Random, SessionID] //
ServerHello [Random, SessionID], Finishedoo

Finished //

oo Application data //

• No new public key operations

• Reuse MS from last handshake

TLS 1.3 18



Triple Handshake (I)

Client Attacker Server

ClientHello [Random] //
ClientHello [Random] //

ServerHello [Random], Certificateoo
ServerHello [Random], Certificateoo
E(Ka, Master Secret), Finished //

E(Ks, Master Secret), Finished //

Finishedoo

Finishedoo

• These connections have the same Master Secret

• “Unknown key share” attack

TLS 1.3 19



Triple Handshake (II)
Client Attacker Server

ClientHello [Random, SessionID] //
ServerHello [Random, SessionID], Finishedoo

Finished //

GET /secure-resource //

HelloRequestoo
ClientHello [Random] //

ServerHello [Random], CertificateRequest, Certificateoo
E(Ks, Master Secret), Certificate, Sign(Kc, ...), Finished //

MAC(MS, Handshake)oo

oo Response

TLS 1.3 20



What’s the impact?

• Resurrection of renegotiation attack

• Attacker controls the request

• Client authenticates it

• Thinks he’s authenticating to the attacker

• ... but he’s authenticating to the server

TLS 1.3 21



Fixing the Triple Handshake (Session Hash)

• The problem is the unknown key share on the first handshake

• Fix is to hash the server certificate into the master secret

• Resumed handshakes inherit this context

TLS 1.3 22



TLS 1.3 Objectives

• Clean up: Remove unused or unsafe features

• Security: Improve security by using modern security analysis

techniques

• Privacy: Encrypt more of the protocol

• Performance: Our target is a 1-RTT handshake for naive clients;

0-RTT handshake for repeat connections

• Continuity: Maintain existing important use cases

TLS 1.3 23



Removed Features

• Static RSA

• Custom (EC)DHE groups

• Compression

• Renegotiation∗

• Non-AEAD ciphers

• Simplified resumption

∗Special accommodation for inline client authentication

TLS 1.3 24



Removed Feature: Static RSA Key Exchange

• Most SSL servers prefer non-PFS cipher suites [SSL14]

(specifically static RSA)

• Obviously suboptimal performance characteristics

• No PFS

• Gone in TLS 1.3

• Important: you can still use RSA certificates

– But with ECDHE or DHE

– Using ECDHE minimizes performance hit

TLS 1.3 25



Removed Feature: Compression

• Recently published vulnerabilities [DR12]

• Nobody really knows how to use compression safely and generically

– Sidenote: HTTP2 uses very limited context-specific

compression [PR14]

• TLS 1.3 bans compression entirely

– TLS 1.3 clients MUST NOT offer any compression

– TLS 1.3 servers MUST fail if compression is offered

TLS 1.3 26



Removed Feature: Non-AEAD Ciphers

• Symmetric ciphers have been under a lot of stress (thanks, Kenny

and friends)

– RC4 [ABP+13]

– AES-CBC [AP13] in MAC-then-Encrypt mode

• TLS 1.3 bans all non-AEAD ciphers

– Current AEAD ciphers for TLS: AES-GCM, AES-CCM,

ARIA-GCM, Camellia-GCM, ChaCha/Poly (coming soon)

TLS 1.3 27



Removed Feature: Custom (EC)DHE groups

• Previous versions of TLS allowed the server to specify their own

DHE group

– The only way things worked for finite field DHE

– (Almost unused) option for ECDHE

• This isn’t optimal

– Servers didn’t know what size FF group client would accept

– Hard for client to validate group [BLF+14]

• TLS 1.3 only uses predefined groups

– Existing RFC 4492 [BWBG+06] EC groups (+ whatever CFRG

comes up with)∗

– New FF groups defined in [Gil14]
∗Bonus: removed point format negotiation too

TLS 1.3 28



Optimizing Through Optimism

• TLS 1.2 assumed that the client knew nothing

– First round trip mostly consumed by learning server capabilities

• TLS 1.3 narrows the range of options

– Only (EC)DHE

– Limited number of groups

• Client can make a good guess at server’s capabilities

– Pick its favorite groups and send a DH share

TLS 1.3 29



TLS 1.3 1-RTT Handshake Skeleton

Client Server

ClientHello [Random, gc] //

ServerHello [Random, gs]

Certificate, Sign(Ks, Handshake), Finished
oo

Application dataoo

Finished //

oo Application data //

• Server can write on its first flight

• Client can write on second flight

• Keys derived from handshake transcript through server MAC

• Server certificate is encrypted

– Only secure against passive attackers

TLS 1.3 30



TLS 1.3 1-RTT Handshake w/ Client Authentication

Skeleton

Client Server

ClientHello [Random, gc] //

ServerHello [Random, gs]

CertificateRequest, Certificate, Sign(Ks, Handshake), Finished
oo

Application dataoo

Certificate, Sign(Kc, Handshake), Finished //

oo Application data //

• Client certificate is encrypted

• Secure against an active attacker

• Effectively SIGMA [Kra03]

TLS 1.3 31



What happens if the client is wrong?

• Client sends some set of groups (P-256)

• Server wants another group (P-384)

Client Server

ClientHello [Random, DH(P256)] //

HelloRetryRequest [P384]oo

ClientHello [Random, DH(P256), DH(P384)] //
...

• This shouldn’t happen often because there are a small number of groups

– Client should memorize server’s preferences

TLS 1.3 32



0-RTT Handshake

• Basic observation: client can cache server’s parameters [Lan10]

– Then send application data on its first flight

• Server has to prime the client with its configuration in a previous

handshake

TLS 1.3 33



TLS 1.3 0-RTT Handshake Skeleton

Client Server

ClientHello [Random, gc, server configuration=XXX]

Application data
//

ServerHello [Random, gs]

Certificate, Sign(Ks, Handshake), Finished
oo

Application dataoo

Finished //

oo Application data //

TLS 1.3 34



Anti-Replay

• TLS anti-replay is based on each side providing random value

– Mixed into the keying material

• Not compatible with 0-RTT

– Client has anti-replay (since they speak first)

– Server’s random isn’t incorporated into client’s first flight

TLS 1.3 35



Anti-Replay (borrowed from Snap Start)

• Server needs to keep a list of client nonces

• Indexed by a server-provided context token

• Client provides a timestamp so server can maintain an anti-replay

window

TLS 1.3 36



This doesn’t work (thanks to DKG)
Client Attacker Server

ClientHello //
POST /buy-something //

ClientHello //
POST /buy-something //

[Process purchase]
ServerHello [accept 0-RTT], ...oo

[Force server reboot]

ClientHello //
POST /buy-something //

ServerHello [reject 0-RTT], ...oo
Finished //

POST /buy-something (re-transmit) //

[Process purchase]

TLS 1.3 37



Oops...

• The real problem is multiple data centers

• This is a distributed state problem

– It’s broken in QUIC and Snap Start too

• Resolution: dont even try

– Only use 0-RTT client data for idempotent requests (GETs)

– Difficult application integration issue

– But too big a win not to do

• This can’t be on by default

– And it will need a special API

TLS 1.3 38



Pre-Shared Keys and Resumption

• TLS 1.2 already supported a Pre-Shared Key (PSK) mode

– Used for IoT-type applications

• Two major modes

– Pure PSK

– PSK + (EC)DHE

• TLS 1.3 merges PSK and resumption

– Server provides a key label

– ... bound to a key derived from the handshake

– Label can be a “ticket” (encryption of the key)

TLS 1.3 39



ClientHello

+ ClientKeyShare

^ + EarlyDataIndication

O-RTT | (Certificate*)

mode | (CertificateVerify*

v (Finished) // Note: new message.

(Application Data*) -------->

ServerHello

ServerKeyShare*

{EncryptedExtensions}

{CertificateRequest*}

{ServerConfiguration*}

{Certificate*} ^

{CertificateVerify*} | Server Auth.

<-------- {Finished} v

1-RTT ^ {Certificate*}

Client | {CertificateVerify*}

Auth | {Finished} -------->

v [Application Data] <-------> [Application Data]

<-------- [CertificateRequest] ^

[Certificate] | Post-HS

[CertificateVerify] | Auth.

[Finished] --------> v

TLS 1.3 40



Single Key Derivation and Authentication Logic

• Based on ideas from OPTLS (Krawczyk and Wee)

Key Exchange Static Secret (SS) Ephemeral Secret (ES)

------------ ------------------ ---------------------

(EC)DHE Client ephemeral Client ephemeral

(full handshake) w/ server ephemeral w/ server ephemeral

(EC)DHE Client ephemeral Client ephemeral

(w/ 0-RTT) w/ server static w/ server ephemeral

PSK Pre-Shared Key Pre-shared key

PSK + (EC)DHE Pre-Shared Key Client ephemeral

w/ server ephemeral

TLS 1.3 41



Key Derivation

Ephemeral
Secret

Static
Secret

mES mSS

Master
Secret

Finished
Secrets

Early
Traffic
Keys

Handshake
Traffic Keys

Exporter
Secret

Resumption
Secret

Application
Traffic
Keys

xES xSS

TLS 1.3 42



Post-Handshake Client Auth

• We removed renegotiation

– But that doesn’t remove the need for post-handshake

authentication

• Current plan: server can send CertificateRequest at any time

– Client responds with “authentication block”

∗ Certificate

∗ Signature over the handshake through server’s MAC

∗ MAC over handshake + Certificate + Signature

• This piece is still under development

– https://github.com/tlswg/tls13-spec/pull/316

TLS 1.3 43



Interactions

• What happens when you combine PSK and post-handshake client

auth?

• This is something you want to work

– Idea is to add client authentication to “resumed” sessions

– In TLS 1.2, this is done with renegotiation

TLS 1.3 44



Attack on Naive Design: Setup [CHvdMS]

Client Attacker Server

oo Handshake //

oo Handshake //

Session Ticket=XXXoo

Session Ticket=XXXoo

TLS 1.3 45



Attack on Naive Design: Reconnect

Client Attacker Server

ClientHello [Random, PSK=XXX] //
ClientHello [Random, PSK=XXX] //

ServerHello [PSK=XXX]

Finished
oo

ServerHello [PSK=XXX]

Finished
oo

CertificateRequestoo
CertificateRequestoo

Cert, Sign(Kc, Handshake), ... // Cert, Sign(Kc, Handshake), ... //

TLS 1.3 46



Analysis

• The question is exactly what you sign

• In draft-10, client signed the server cert but not the server MAC

– Didn’t include client auth with PSK

– ... or post-handshake

• PR#316 includes server’s cert and MAC

– Which transitively includes the server’s certificate

– This reinforces this decision

• This result comes directly from formal analysis with Tamarin

– This is good news!

– Big thanks to Cas Cremers, Marko Horvat, Thyla van der

Merwe, Sam Scott

TLS 1.3 47



Traffic Analysis Defenses

• TLS 1.2 is very susceptible to traffic analysis

– Content “type” in the clear

– Packet length has minimal padding

∗ 0-255 bytes in block cipher modes

∗ No padding in stream and AEAD modes

• TLS 1.3 changes

– Content type is encrypted

– Arbitrary amounts of padding allowed

– ... but it’s the application’s job to set padding policy

TLS 1.3 48



Packet Format

PayloadLengthVersionType

TLS 1.2 Packet Layout

PayloadLengthVersion
(Fixed)23

TLS 1.3 Packet Layout

Type Pad
(0s)

TLS 1.3 49



Server Name Indication

• How do you have multiple domains on the same server?

• Problem: Each domain may have its own certificate

– How does the server know which one to present?

• Wrong way: each server gets their own IP address

– Obvously this does not scale

– But it’s what people actually do (thanks Windows XP and

Android 2.2)

• Right: ClientHello extension indicating server domain name

– “Server Name Indication” (SNI)

• SNI is required for TLS 1.3

TLS 1.3 50



Open Issue: Encrypted SNI

• SNI leaks the server’s identity

– Even if the server certificate is encrypted!

• would be nice to hide the SNI

– So hidden.com and innocuous.com could share a server

– Important for anti-censorship applications

• WG is still struggling with this

– General idea is to use the 0-RTT first flight to hide SNI

– But the details are complicated

– Looks like we can do this without major changes (and perhaps

none)

TLS 1.3 51



Current Status

• Currently in draft-10

• Most major issues resolved at IETF Yokohama (two weeks ago)

• Formal models already starting to emerge

• Implementation in NSS (Firefox) by EOY

– OpenSSL, etc. to follow

• TLS Ready or Not Workshop in February (co-located with ISOC

NDSS)

• Expect Last Call in Q1

TLS 1.3 52



Following the Work

• IETF TLS Mailing List:

https://www.ietf.org/mailman/listinfo/tls

• Github repository: https://github.com/tlswg/tls13-spec

• Editor’s draft: http://tlswg.github.io/tls13-spec/

TLS 1.3 53



Questions?

TLS 1.3 54



Extra Material

TLS 1.3 55



Backward Compatibility Problems

1. What do you do if the other side doesn’t support RI?

• Server can refuse to renegotiate

• Client can only refuse to connect

– Guess what clients do...

2. Some servers are extension intolerant

• Extensions were defined after SSLv3 was already published

• Some servers choke on extensions

• ... badly

TLS 1.3 56



Special Signaling Cipher Suites (I)

• OK, so the client can’t always send an extension

– What can it safely send?

TLS 1.3 57



Special Signaling Cipher Suites (II)

• OK, so the client can’t always send an extension

– What can it safely send?

– ... a cipher suite

"IANA has added TLS cipher suite number 0x00,0xFF with name

TLS_EMPTY_RENEGOTIATION_INFO_SCSV to the TLS Cipher Suite registry."

- RFC5746

• Cipher suite negotiation code gets exercised regularly

• And got a workout when we added AES

– So it’s mostly safe to send new cipher suites

TLS 1.3 58



TLS 1.2: (EC)DHE Skeleton

Client Server

ClientHello [Random] //
ServerHello [Random], Certificate, Sign(Ks, gs, ...)oo

gc, Finished //

Finishedoo

oo Application data //

TLS 1.3 59



TLS 1.2: (EC)DHE + Client Authentication

Client Server

ClientHello [Random] //
ServerHello [Random], Certificate, CertificateRequest, Sign(Ks, gs, ...)oo

gc, Certificate, Sign(Kc, ...), Finished //

Finishedoo

oo Application data //

TLS 1.3 60



References

[ABP+13] Nadhem J AlFardan, Daniel J Bernstein, Kenneth G Paterson,
Bertram Poettering, and Jacob CN Schuldt. On the Security
of RC4 in TLS. In USENIX Security, pages 305–320, 2013.

[AP13] N AlFardan and Kenneth G Paterson. Lucky 13: Breaking
the TLS and DTLS record protocols. In IEEE Symposium on
Security and Privacy, 2013.

[BLF+14] Karthikeyan Bhargavan, Antoine Delignat Lavaud, Cédric
Fournet, Alfredo Pironti, and Pierre Yves Strub. Triple hand-
shakes and cookie cutters: Breaking and fixing authentication
over tls. In Security and Privacy (SP), 2014 IEEE Symposium
on, pages 98–113. IEEE, 2014.

[BWBG+06] S. Blake-Wilson, N. Bolyard, V. Gupta, C. Hawk, and
B. Moeller. Elliptic Curve Cryptography (ECC) Cipher Suites

TLS 1.3 60



for Transport Layer Security (TLS). RFC 4492 (Informational),
May 2006. Updated by RFCs 5246, 7027.

[CHvdMS] Cas Cremers, Marko Horvat, Thyla van der Merwe, and
Sam Scott. Revision 10: possible attack if client authen-
tication is allowed during PSK. https://www.ietf.org/

mail-archive/web/tls/current/msg18215.html.

[DR12] Thai Duong and Juliano Rizzo. The crime attack. In Presen-
tation at ekoparty Security Conference, 2012.

[Gil14] Daniel Kahn Gillmor. Negotiated Finite Field Diffie-Hellman
Ephemeral Parameters for TLS. Internet-Draft draft-ietf-tls-
negotiated-ff-dhe, Internet Engineering Task Force, August
2014. Work in progress.

[Lan10] Adam Langley. Transport Layer Security (TLS) Snap Start.
Internet-Draft draft-agl-tls-snapstart-00, Internet Engineering
Task Force, June 2010. Work in progress.

TLS 1.3 60



[PR14] Roberto Peon and Herve Ruellan. HPACK - Header Com-
pression for HTTP/2. Internet-Draft draft-ietf-httpbis-header-
compression-09, Internet Engineering Task Force, July 2014.
Work in progress.

[RRDO10] E. Rescorla, M. Ray, S. Dispensa, and N. Oskov. Transport
Layer Security (TLS) Renegotiation Indication Extension. RFC
5746 (Proposed Standard), February 2010.

[SSL14] SSL Pulse. https://www.ssllabs.com/, Dec 2014.

TLS 1.3 60


