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Overview

• Background/Review of TLS

• Some problems with TLS 1.2

• Objectives for TLS 1.3

• What does TLS 1.3 look like?

• Open issues/schedule/etc.
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What is Transport Layer Security?

• Probably the Internet’s most important security protocol

• Designed over 20 years ago by Netscape for Web transactions

– Back then, called Secure Sockets Layer

• But used for just about everything you can think of

– HTTP

– SSL-VPNs

– E-mail

– Voice/video

– IoT

• Maintained by the Internet Engineering Task Force

– We’re now at version 1.2
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A Secure Channel

• Client connects to a known server (e.g., it has the domain name)

• Server is (almost) always authenticated by TLS

• Client may or may not be authenticated by TLS

– Often authenticated by the application, e.g., with a password

• After setup, data is encrypted and authenticated

– Though what “authenticated” means to the server is fuzzy
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TLS Structure

• Handshake protocol

– Establish shared keys (typically using public key cryptography)

– Negotiate algorithms, modes, parameters

– Authenticate one or both sides

• Record protocol

– Carry individual messages

– Protected under symmetric keys

• This is a common design (SSH, IPsec, etc.)

TLS 1.3 5



TLS 1.2: RSA Handshake Skeleton

Client Server

ClientHello [Random] //
ServerHello [Random], Certificateoo

E(Ks, Master Secret), Finished=MAC(MS, Handshake) //
Finished=MAC(MS, Handshake)oo

oo Application data //
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More on Negotiation

• ClientHello contains more than just random values

struct {

ProtocolVersion client_version;

Random random;

SessionID session_id;

CipherSuite cipher_suites<2..2^16-2>;

CompressionMethod compression_methods<1..2^8-1>;

select (extensions_present) {

case false:

struct {};

case true:

Extension extensions<0..2^16-1>;

};

} ClientHello;
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Client Offers, Server Chooses

struct {

ProtocolVersion server_version;

Random random;

SessionID session_id;

CipherSuite cipher_suite;

CompressionMethod compression_method;

select (extensions_present) {

case false:

struct {};

case true:

Extension extensions<0..2^16-1>;

};

} ServerHello;
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What’s in a Cipher Suite?

• Key Exchange (RSA, DHE, ECDHE, PSK, ...)

• Authentication (RSA, DSS, ECDSA, ...)

• Encryption (AES, Camellia, ...)

• MAC (MD5, SHA1, SHA256, ...)
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TLS 1.2: Renegotiation

Client Server

ClientHello [Random] //
ServerHello [Random], Certificateoo
E(Ks, Master Secret), Finished //

Finishedoo

ClientHello [Random] //
ServerHello [Random], Certificateoo
E(Ks, Master Secret), Finished //

Finishedoo

oo Application data //
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Renegotiation Attack [RRDO10]

Client Attacker Server

ClientHello [Random] //
ServerHello [Random], Certificateoo
E(Ks, Master Secret), Finished //

Finishedoo

oo POST /... //
ClientHello [Random] // ClientHello [Random] //

ServerHello [Random], Certificateoo ServerHello [Random], Certificateoo
E(Ks, Master Secret), Finished // E(Ks, Master Secret), Finished //

Finishedoo Finishedoo

oo POST /... Cookie=... //
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Why is this bad?

• Attacker gets to splice their data to the client’s

• Example

– Attacker-controlled request +

– Client’s credentials

• This looks like a renegotiation to server
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Renegotiation Info Extension [RFC5746]

• New extension in {Client,Server}Hello

– Client’s version contains its last Finished on this connection

– Server’s version contains last pair of Finished from this

connection

• If you’re not renegotiating with the same person you get a

mismatch
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Uses for renegotiation (or, why can’t we just get rid

of it...)

• Conceal the client’s certificate

• Post-handshake client authentication

• Refresh the traffic keying material
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TLS 1.2: Renegotiation for Client Authentication

ClientHello [Random] //
ServerHello [Random], Certificate, Sign(Ks, gs, ...)oo

gc, Finished //

Finishedoo

GET /secure... //

HelloRequestoo
ClientHello [Random] //

ServerHello [Random], Certificate, CertificateRequest, Sign(Ks, gs, ...)oo
gc, Certificate, Sign(Kc, ...), Finished //

Finishedoo

oo Response
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Session Resumption

• “Public key” operations are comparatively expensive

– They used to be really expensive

• Solution: amortize this operation across multiple connections
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Session Establishment

Client Server

ClientHello [Random, SessionID] //
ServerHello [Random, SessionID], Certificateoo

E(Ks, Master Secret), Finished //

Finishedoo

oo Application data //
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Session Resumption

Client Server

ClientHello [Random, SessionID] //
ServerHello [Random, SessionID], Finishedoo

Finished //

oo Application data //

• No new public key operations

• Reuse MS from last handshake
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Triple Handshake (I)

Client Attacker Server

ClientHello [Random] //
ClientHello [Random] //

ServerHello [Random], Certificateoo
ServerHello [Random], Certificateoo
E(Ka, Master Secret), Finished //

E(Ks, Master Secret), Finished //

Finishedoo

Finishedoo

• These connections have the same Master Secret

• “Unknown key share” attack
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Triple Handshake (II)
Client Attacker Server

ClientHello [Random, SessionID] //
ServerHello [Random, SessionID], Finishedoo

Finished //

GET /secure-resource //

HelloRequestoo
ClientHello [Random] //

ServerHello [Random], CertificateRequest, Certificateoo
E(Ks, Master Secret), Certificate, Sign(Kc, ...), Finished //

MAC(MS, Handshake)oo

oo Response

TLS 1.3 20



What’s the impact?

• Resurrection of renegotiation attack

• Attacker controls the request

• Client authenticates it

• Thinks he’s authenticating to the attacker

• ... but he’s authenticating to the server

TLS 1.3 21



Fixing the Triple Handshake (Session Hash)

• The problem is the unknown key share on the first handshake

• Fix is to hash the server certificate into the master secret

• Resumed handshakes inherit this context
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TLS 1.3 Objectives

• Clean up: Remove unused or unsafe features

• Security: Improve security by using modern security analysis

techniques

• Privacy: Encrypt more of the protocol

• Performance: Our target is a 1-RTT handshake for naive clients;

0-RTT handshake for repeat connections

• Continuity: Maintain existing important use cases
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Removed Features

• Static RSA

• Custom (EC)DHE groups

• Compression

• Renegotiation∗

• Non-AEAD ciphers

• Simplified resumption

∗Special accommodation for inline client authentication
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Removed Feature: Static RSA Key Exchange

• Most SSL servers prefer non-PFS cipher suites [SSL14]

(specifically static RSA)

• Obviously suboptimal performance characteristics

• No PFS

• Gone in TLS 1.3

• Important: you can still use RSA certificates

– But with ECDHE or DHE

– Using ECDHE minimizes performance hit
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Removed Feature: Compression

• Recently published vulnerabilities [DR12]

• Nobody really knows how to use compression safely and generically

– Sidenote: HTTP2 uses very limited context-specific

compression [PR14]

• TLS 1.3 bans compression entirely

– TLS 1.3 clients MUST NOT offer any compression

– TLS 1.3 servers MUST fail if compression is offered
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Removed Feature: Non-AEAD Ciphers

• Symmetric ciphers have been under a lot of stress (thanks, Kenny

and friends)

– RC4 [ABP+13]

– AES-CBC [AP13] in MAC-then-Encrypt mode

• TLS 1.3 bans all non-AEAD ciphers

– Current AEAD ciphers for TLS: AES-GCM, AES-CCM,

ARIA-GCM, Camellia-GCM, ChaCha/Poly (coming soon)
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Removed Feature: Custom (EC)DHE groups

• Previous versions of TLS allowed the server to specify their own

DHE group

– The only way things worked for finite field DHE

– (Almost unused) option for ECDHE

• This isn’t optimal

– Servers didn’t know what size FF group client would accept

– Hard for client to validate group [BLF+14]

• TLS 1.3 only uses predefined groups

– Existing RFC 4492 [BWBG+06] EC groups (+ whatever CFRG

comes up with)∗

– New FF groups defined in [Gil14]
∗Bonus: removed point format negotiation too

TLS 1.3 28



Optimizing Through Optimism

• TLS 1.2 assumed that the client knew nothing

– First round trip mostly consumed by learning server capabilities

• TLS 1.3 narrows the range of options

– Only (EC)DHE

– Limited number of groups

• Client can make a good guess at server’s capabilities

– Pick its favorite groups and send a DH share
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TLS 1.3 1-RTT Handshake Skeleton

Client Server

ClientHello [Random, gc] //

ServerHello [Random, gs]

Certificate, Sign(Ks, Handshake), Finished
oo

Application dataoo

Finished //

oo Application data //

• Server can write on its first flight

• Client can write on second flight

• Keys derived from handshake transcript through server MAC

• Server certificate is encrypted

– Only secure against passive attackers
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TLS 1.3 1-RTT Handshake w/ Client Authentication

Skeleton

Client Server

ClientHello [Random, gc] //

ServerHello [Random, gs]

CertificateRequest, Certificate, Sign(Ks, Handshake), Finished
oo

Application dataoo

Certificate, Sign(Kc, Handshake), Finished //

oo Application data //

• Client certificate is encrypted

• Secure against an active attacker

• Effectively SIGMA [Kra03]
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What happens if the client is wrong?

• Client sends some set of groups (P-256)

• Server wants another group (P-384)

Client Server

ClientHello [Random, DH(P256)] //

HelloRetryRequest [P384]oo

ClientHello [Random, DH(P256), DH(P384)] //
...

• This shouldn’t happen often because there are a small number of groups

– Client should memorize server’s preferences
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0-RTT Handshake

• Basic observation: client can cache server’s parameters [Lan10]

– Then send application data on its first flight

• Server has to prime the client with its configuration in a previous

handshake
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TLS 1.3 0-RTT Handshake Skeleton

Client Server

ClientHello [Random, gc, server configuration=XXX]

Application data
//

ServerHello [Random, gs]

Certificate, Sign(Ks, Handshake), Finished
oo

Application dataoo

Finished //

oo Application data //
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Anti-Replay

• TLS anti-replay is based on each side providing random value

– Mixed into the keying material

• Not compatible with 0-RTT

– Client has anti-replay (since they speak first)

– Server’s random isn’t incorporated into client’s first flight
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Anti-Replay (borrowed from Snap Start)

• Server needs to keep a list of client nonces

• Indexed by a server-provided context token

• Client provides a timestamp so server can maintain an anti-replay

window
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This doesn’t work (thanks to DKG)
Client Attacker Server

ClientHello //
POST /buy-something //

ClientHello //
POST /buy-something //

[Process purchase]
ServerHello [accept 0-RTT], ...oo

[Force server reboot]

ClientHello //
POST /buy-something //

ServerHello [reject 0-RTT], ...oo
Finished //

POST /buy-something (re-transmit) //

[Process purchase]
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Oops...

• The real problem is multiple data centers

• This is a distributed state problem

– It’s broken in QUIC and Snap Start too

• Resolution: dont even try

– Only use 0-RTT client data for idempotent requests (GETs)

– Difficult application integration issue

– But too big a win not to do

• This can’t be on by default

– And it will need a special API
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Pre-Shared Keys and Resumption

• TLS 1.2 already supported a Pre-Shared Key (PSK) mode

– Used for IoT-type applications

• Two major modes

– Pure PSK

– PSK + (EC)DHE

• TLS 1.3 merges PSK and resumption

– Server provides a key label

– ... bound to a key derived from the handshake

– Label can be a “ticket” (encryption of the key)
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ClientHello

+ ClientKeyShare

^ + EarlyDataIndication

O-RTT | (Certificate*)

mode | (CertificateVerify*

v (Finished) // Note: new message.

(Application Data*) -------->

ServerHello

ServerKeyShare*

{EncryptedExtensions}

{CertificateRequest*}

{ServerConfiguration*}

{Certificate*} ^

{CertificateVerify*} | Server Auth.

<-------- {Finished} v

1-RTT ^ {Certificate*}

Client | {CertificateVerify*}

Auth | {Finished} -------->

v [Application Data] <-------> [Application Data]

<-------- [CertificateRequest] ^

[Certificate] | Post-HS

[CertificateVerify] | Auth.

[Finished] --------> v
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Single Key Derivation and Authentication Logic

• Based on ideas from OPTLS (Krawczyk and Wee)

Key Exchange Static Secret (SS) Ephemeral Secret (ES)

------------ ------------------ ---------------------

(EC)DHE Client ephemeral Client ephemeral

(full handshake) w/ server ephemeral w/ server ephemeral

(EC)DHE Client ephemeral Client ephemeral

(w/ 0-RTT) w/ server static w/ server ephemeral

PSK Pre-Shared Key Pre-shared key

PSK + (EC)DHE Pre-Shared Key Client ephemeral

w/ server ephemeral
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Key Derivation

Ephemeral
Secret

Static
Secret

mES mSS

Master
Secret

Finished
Secrets

Early
Traffic
Keys

Handshake
Traffic Keys

Exporter
Secret

Resumption
Secret

Application
Traffic
Keys

xES xSS
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Post-Handshake Client Auth

• We removed renegotiation

– But that doesn’t remove the need for post-handshake

authentication

• Current plan: server can send CertificateRequest at any time

– Client responds with “authentication block”

∗ Certificate

∗ Signature over the handshake through server’s MAC

∗ MAC over handshake + Certificate + Signature

• This piece is still under development

– https://github.com/tlswg/tls13-spec/pull/316
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Interactions

• What happens when you combine PSK and post-handshake client

auth?

• This is something you want to work

– Idea is to add client authentication to “resumed” sessions

– In TLS 1.2, this is done with renegotiation
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Attack on Naive Design: Setup [CHvdMS]

Client Attacker Server

oo Handshake //

oo Handshake //

Session Ticket=XXXoo

Session Ticket=XXXoo
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Attack on Naive Design: Reconnect

Client Attacker Server

ClientHello [Random, PSK=XXX] //
ClientHello [Random, PSK=XXX] //

ServerHello [PSK=XXX]

Finished
oo

ServerHello [PSK=XXX]

Finished
oo

CertificateRequestoo
CertificateRequestoo

Cert, Sign(Kc, Handshake), ... // Cert, Sign(Kc, Handshake), ... //
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Analysis

• The question is exactly what you sign

• In draft-10, client signed the server cert but not the server MAC

– Didn’t include client auth with PSK

– ... or post-handshake

• PR#316 includes server’s cert and MAC

– Which transitively includes the server’s certificate

– This reinforces this decision

• This result comes directly from formal analysis with Tamarin

– This is good news!

– Big thanks to Cas Cremers, Marko Horvat, Thyla van der

Merwe, Sam Scott
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Traffic Analysis Defenses

• TLS 1.2 is very susceptible to traffic analysis

– Content “type” in the clear

– Packet length has minimal padding

∗ 0-255 bytes in block cipher modes

∗ No padding in stream and AEAD modes

• TLS 1.3 changes

– Content type is encrypted

– Arbitrary amounts of padding allowed

– ... but it’s the application’s job to set padding policy
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Packet Format

PayloadLengthVersionType

TLS 1.2 Packet Layout

PayloadLengthVersion
(Fixed)23

TLS 1.3 Packet Layout

Type Pad
(0s)
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Server Name Indication

• How do you have multiple domains on the same server?

• Problem: Each domain may have its own certificate

– How does the server know which one to present?

• Wrong way: each server gets their own IP address

– Obvously this does not scale

– But it’s what people actually do (thanks Windows XP and

Android 2.2)

• Right: ClientHello extension indicating server domain name

– “Server Name Indication” (SNI)

• SNI is required for TLS 1.3
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Open Issue: Encrypted SNI

• SNI leaks the server’s identity

– Even if the server certificate is encrypted!

• would be nice to hide the SNI

– So hidden.com and innocuous.com could share a server

– Important for anti-censorship applications

• WG is still struggling with this

– General idea is to use the 0-RTT first flight to hide SNI

– But the details are complicated

– Looks like we can do this without major changes (and perhaps

none)
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Current Status

• Currently in draft-10

• Most major issues resolved at IETF Yokohama (two weeks ago)

• Formal models already starting to emerge

• Implementation in NSS (Firefox) by EOY

– OpenSSL, etc. to follow

• TLS Ready or Not Workshop in February (co-located with ISOC

NDSS)

• Expect Last Call in Q1
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Following the Work

• IETF TLS Mailing List:

https://www.ietf.org/mailman/listinfo/tls

• Github repository: https://github.com/tlswg/tls13-spec

• Editor’s draft: http://tlswg.github.io/tls13-spec/
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Questions?
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Extra Material
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Backward Compatibility Problems

1. What do you do if the other side doesn’t support RI?

• Server can refuse to renegotiate

• Client can only refuse to connect

– Guess what clients do...

2. Some servers are extension intolerant

• Extensions were defined after SSLv3 was already published

• Some servers choke on extensions

• ... badly
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Special Signaling Cipher Suites (I)

• OK, so the client can’t always send an extension

– What can it safely send?
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Special Signaling Cipher Suites (II)

• OK, so the client can’t always send an extension

– What can it safely send?

– ... a cipher suite

"IANA has added TLS cipher suite number 0x00,0xFF with name

TLS_EMPTY_RENEGOTIATION_INFO_SCSV to the TLS Cipher Suite registry."

- RFC5746

• Cipher suite negotiation code gets exercised regularly

• And got a workout when we added AES

– So it’s mostly safe to send new cipher suites
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TLS 1.2: (EC)DHE Skeleton

Client Server

ClientHello [Random] //
ServerHello [Random], Certificate, Sign(Ks, gs, ...)oo

gc, Finished //

Finishedoo

oo Application data //
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TLS 1.2: (EC)DHE + Client Authentication

Client Server

ClientHello [Random] //
ServerHello [Random], Certificate, CertificateRequest, Sign(Ks, gs, ...)oo

gc, Certificate, Sign(Kc, ...), Finished //

Finishedoo

oo Application data //
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