NVIDIA ACCELERATED COMPUTING
GEFORCE: PC Gaming

200M GeForce gamers worldwide

Most advanced technology

Gaming ecosystem: More than just chips

Amazing experiences & imagery
NINTENDO SWITCH: POWERED BY NVIDIA TEGRA
GEFORCE NOW:
AMAZING GAMES
ANYWHERE

AAA titles delivered at 1080p 60fps

Streamed to SHIELD family of devices

Streaming to Mac (beta)

GPU COMPUTING

Drug Design
Molecular Dynamics
15x speed up

Seismic Imaging
Reverse Time Migration
14x speed up

Automotive Design
Computational Fluid Dynamics

Medical Imaging
Computed Tomography
30-100x speed up

Astrophysics
n-body

Options Pricing
Monte Carlo
20x speed up

Product Development
Finite Difference Time Domain

Weather Forecasting
Atmospheric Physics

Drug Design
Molecular Dynamics
15x speed up

Seismic Imaging
Reverse Time Migration
14x speed up

Automotive Design
Computational Fluid Dynamics

Medical Imaging
Computed Tomography
30-100x speed up

Astrophysics
n-body

Options Pricing
Monte Carlo
20x speed up

Product Development
Finite Difference Time Domain

Weather Forecasting
Atmospheric Physics
GPU: 2017
2017: TESLA VOLTA V100

- 21B transistors
- 815 mm²
- 80 SM
- 5120 CUDA Cores
- 640 Tensor Cores
- 16 GB HBM2
- 900 GB/s HBM2
- 300 GB/s NVLink

*full GV100 chip contains 84 SMs
V100 SPECIFICATIONS

<table>
<thead>
<tr>
<th></th>
<th>Tesla V100 PCIe</th>
<th>Tesla V100 SXM2</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPU Architecture</td>
<td>NVIDIA Volta</td>
<td></td>
</tr>
<tr>
<td>NVIDIA Tensor Cores</td>
<td>640</td>
<td></td>
</tr>
<tr>
<td>NVIDIA CUDA* Cores</td>
<td>5,120</td>
<td></td>
</tr>
<tr>
<td>Double-Precision Performance</td>
<td>7 TFLOPS</td>
<td>7.5 TFLOPS</td>
</tr>
<tr>
<td>Single-Precision Performance</td>
<td>14 TFLOPS</td>
<td>15 TFLOPS</td>
</tr>
<tr>
<td>Tensor Performance</td>
<td>112 TFLOPS</td>
<td>120 TFLOPS</td>
</tr>
<tr>
<td>GPU Memory</td>
<td>16 GB HBM2</td>
<td></td>
</tr>
<tr>
<td>Memory Bandwidth</td>
<td></td>
<td>900 GB/sec</td>
</tr>
<tr>
<td>ECC</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Interconnect Bandwidth*</td>
<td>32 GB/sec</td>
<td>300 GB/sec</td>
</tr>
<tr>
<td>System Interface</td>
<td>PCIe Gen3</td>
<td>NVIDIA NVLink</td>
</tr>
<tr>
<td>Form Factor</td>
<td>PCIe Full Height/Length</td>
<td>SXM2</td>
</tr>
<tr>
<td>Max Power Consumption</td>
<td>250 W</td>
<td>300 W</td>
</tr>
</tbody>
</table>
HOW DID WE GET HERE?
NVIDIA GPUS: 1999 TO NOW

SOUL OF THE GRAPHICS PROCESSING UNIT

GPU: Changes Everything

• Accelerate computationally-intensive applications

• NVIDIA introduced GPU in 1999
 • A single chip processor to accelerate PC gaming and 3D graphics

• Goal: approach the image quality of movie studio offline rendering farms, but in real-time
 • Instead of hours per frame, > 60 frames per second

• Millions of pixels per frame can all be operated on in parallel
 • 3D graphics is often termed *embarrassingly parallel*

• Use large arrays of floating point units to exploit wide and deep parallelism
CLASSIC GEFORCE GPUS
GEFORCE 6 AND 7 SERIES
2004-2006

- Example: GeForce 7900 GTX
- 278M transistors
- 650MHz pipeline clock
- 196mm2 in 90nm
- >300 GFLOPS peak, single-precision
THE LIFE OF A TRIANGLE IN A GPU

Classic Edition

- process commands convert to FP
- transform vertices to screen-space
- generate per-triangle equations
- generate pixels, delete pixels that cannot be seen
- determine the colors, transparencies and depth of the pixel
- do final hidden surface test, blend and write out color and new depth

Diagram:

- Host / Front End / Vertex Fetch
- Vertex Processing
- Primitive Assembly, Setup
- Rasterize & Zcull
- Texture
- Pixel Engine (ROP)

Additional processes:
- Texture
- Host
- Front End
- Vertex Fetch
- Frame Buffer Controller
- Vertex Processing
- Primitive Assembly, Setup
- Rasterize & Zcull
- Texture
- Pixel Engines (ROP)
NUMERIC REPRESENTATIONS IN A GPU

• Fixed point formats
 • u8, s8, u16, s16, s3.8, s5.10, …

• Floating point formats
 • fp16, fp24, fp32, …
 • Tradeoff of dynamic range vs. precision

• Block floating point formats
 • Treat multiple operands as having a common exponent
 • Allows a tradeoff in dynamic range vs storage and computation
INSIDE THE 7900GTX GPU

- Host / FW / VTF
- Z-Cull
- Shader Instruction Dispatch
- Fragment Crossbar
- Memory Partition
- Memory Partition
- Memory Partition
- Memory Partition
- DRAM(s)
- DRAM(s)
- DRAM(s)
- DRAM(s)

- 8 vertex shaders
- 24 pixel shaders
- 16 pixel engines
- 4 independent 64-bit memory partitions
- vertex fetch engine
- conversion to pixels
- redistribute pixels
G80: REDEFINED THE GPU
G80
GeForce 8800 released 2006

- G80 first GPU with a unified shader processor architecture
 - Introduced the SM: Streaming Multiprocessor
 - Array of simple streaming processor cores: SPs or CUDA cores
 - All shader stages use the same instruction set
 - All shader stages execute on the same units
 - Permits better sharing of SM hardware resources
 - Recognized that building dedicated units often results in under-utilization due to the application workload
G80 FEATURES

- 681M transistors
- 470mm² in 90nm
- First to support Microsoft DirectX10 API
- Invested a little extra (epsilon) HW in SM to also support general purpose throughput computing
 - Beginning of CUDA everywhere
- SM functional units designed to run at 2x frequency, half the number of units
 - 576 GFLOPs @ 1.5GHz, IEEE 754 fp32 FADD and FMUL
- 155W
BEGINNING OF GPU COMPUTING

Throughput Computing

- **Latency Oriented**
 - Fewer, bigger cores with out-of-order, speculative execution
 - Big caches optimized for latency
 - Math units are small part of the die

- **Throughput Oriented**
 - Lots of simple compute cores and hardware scheduling
 - Big register files. Caches optimized for bandwidth.
 - Math units are most of the die
CUDA
Most successful environment for throughput computing

C++ for throughput computers
On-chip memory management
Asynchronous, parallel API
Programmability makes it possible to innovate

New layer type? No problem.
G80 ARCHITECTURE
FROM FERMI TO PASCAL
FERMI GF100
Tesla C2070 released 2011

- 3B transistors
- 529 mm² in 40nm
- 1150 MHz SM clock
- 3rd generation SM, each with configurable L1/shared memory
- IEEE 754-2008 FMA
- 1030 GFLOPS fp32, 515 GFLOPS fp64
- 247W
KEPLER GK110
Tesla K40 released 2013

• 7.1B transistors
• 550 mm² in 28nm
• Intense focus on power efficiency, operating at lower frequency
 • 2880 CUDA cores at 810 MHz
• Tradeoff of area efficiency vs. power efficiency
• 4.3 TFLOPS fp32, 1.4 TFLOPS fp64
• 235W
Kepler: Fast & Efficient

SM
Fermi

32 cores

3x Perf / Watt

SMX
Kepler

192 cores
TITAN SUPERCOMPUTER
Oak Ridge National Laboratory

World’s #1 Open Science Supercomputer
Flagship accelerated computing system | 200-cabinet Cray XK7 supercomputer |
18,688 nodes (AMD 16-core Opteron + NVIDIA Tesla K20 GPU) |
CPUs/GPUs working together – GPU accelerates | 20+ Petaflops
PASCAL GP100
released 2016

• 15.3B transistors
• 610 mm² in 16ff
• 10.6 TFLOPS fp32, 5.3 TFLOPS fp64
• 21 TFLOPS fp16 for Deep Learning training and inference acceleration
• New high-bandwidth NVLink GPU interconnect
• HBM2 stacked memory
• 300W
MAJOR ADVANCES IN PASCAL

3x Compute

5x GPU-GPU BW

3x GPU Mem BW

K40
M40
P100 (FP32)
P100 (FP16)

Teraflops (FP32/FP16)

Bandwidth (GB/Sec)

Bandwidth

NVIDIA CONFIDENTIAL. DO NOT DISTRIBUTE.
GEFORCE GTX 1080TI

https://youtu.be/2c2vN736V60
FINAL FANTASY XV PREVIEW DEMO WITH GEFORCE GTX 1080TI

https://youtu.be/h0o3fctwXw0
2017: VOLTA
TESLA V100: 2017

21B transistors
815 mm² in 16ff

80 SM
5120 CUDA Cores
640 Tensor Cores

16 GB HBM2
900 GB/s HBM2
300 GB/s NVLink

*full GV100 chip contains 84 SMs
TESLA V100

Volta Architecture

Most Productive GPU

Improved NVLink & HBM2

Efficient Bandwidth

New SM Core

Performance & Programmability

Independent Thread Scheduling

New Algorithms

Tensor Core

120 Programmable TFLOPS Deep Learning

More V100 Features: 2x L2 atomics, int8, new memory model, copy engine page migration, MPS acceleration, and more ...

The Fastest and Most Productive GPU for Deep Learning and HPC
GPU PERFORMANCE COMPARISON

<table>
<thead>
<tr>
<th></th>
<th>P100</th>
<th>V100</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>DL Training</td>
<td>10 TFLOPS</td>
<td>120 TFLOPS</td>
<td>12x</td>
</tr>
<tr>
<td>DL Inferencing</td>
<td>21 TFLOPS</td>
<td>120 TFLOPS</td>
<td>6x</td>
</tr>
<tr>
<td>FP64/FP32</td>
<td>5/10 TFLOPS</td>
<td>7.5/15 TFLOPS</td>
<td>1.5x</td>
</tr>
<tr>
<td>HBM2 Bandwidth</td>
<td>720 GB/s</td>
<td>900 GB/s</td>
<td>1.2x</td>
</tr>
<tr>
<td>STREAM Triad Perf</td>
<td>557 GB/s</td>
<td>855 GB/s</td>
<td>1.5x</td>
</tr>
<tr>
<td>NVLink Bandwidth</td>
<td>160 GB/s</td>
<td>300 GB/s</td>
<td>1.9x</td>
</tr>
<tr>
<td>L2 Cache</td>
<td>4 MB</td>
<td>6 MB</td>
<td>1.5x</td>
</tr>
<tr>
<td>L1 Caches</td>
<td>1.3 MB</td>
<td>10 MB</td>
<td>7.7x</td>
</tr>
</tbody>
</table>
CUDA TensorOp instructions & data formats

4x4 matrix processing array

\[D[\text{FP32}] = A[\text{FP16}] \times B[\text{FP16}] + C[\text{FP32}] \]

Optimized for deep learning
TENSOR CORE
Mixed Precision Matrix Math
4x4 matrices

\[
D = \begin{pmatrix}
A_{0,0} & A_{0,1} & A_{0,2} & A_{0,3} \\
A_{1,0} & A_{1,1} & A_{1,2} & A_{1,3} \\
A_{2,0} & A_{2,1} & A_{2,2} & A_{2,3} \\
A_{3,0} & A_{3,1} & A_{3,2} & A_{3,3}
\end{pmatrix} \begin{pmatrix}
B_{0,0} & B_{0,1} & B_{0,2} & B_{0,3} \\
B_{1,0} & B_{1,1} & B_{1,2} & B_{1,3} \\
B_{2,0} & B_{2,1} & B_{2,2} & B_{2,3} \\
B_{3,0} & B_{3,1} & B_{3,2} & B_{3,3}
\end{pmatrix} + \begin{pmatrix}
C_{0,0} & C_{0,1} & C_{0,2} & C_{0,3} \\
C_{1,0} & C_{1,1} & C_{1,2} & C_{1,3} \\
C_{2,0} & C_{2,1} & C_{2,2} & C_{2,3} \\
C_{3,0} & C_{3,1} & C_{3,2} & C_{3,3}
\end{pmatrix}
\]

\[D = AB + C\]
VOLTA TENSOR OPERATION

FP16 storage/input

Full precision product

Sum with FP32 accumulator

Convert to FP32 result

Also supports FP16 accumulator mode for inferencing
NVLINK - PERFORMANCE AND POWER

Bandwidth	25Gbps signaling
	6 NVLinks for GV100
	1.9 x Bandwidth improvement over GP100
Coherence	Latency sensitive CPU caches GMEM
	Fast access in local cache hierarchy
	Probe filter in GPU
Power Savings	Reduce number of active lanes for lightly loaded link
NVLink Nodes

DL - HYBRID CUBE MESH - DGX-1 w/ Volta

HPC - P9 CORAL NODE - SUMMIT
NARROWING THE SHARED MEMORY GAP
with the GV100 L1 cache

Cache: vs shared
• Easier to use
• 90%+ as good

Shared: vs cache
• Faster atomics
• More banks
• More predictable

Directed testing: shared in global

Average
Shared
Memory
Benefit

70%

Pascal

93%

Volta
US to Build Two Flagship Supercomputers

SUMMIT
- 150-300 PFLOPS Peak Performance
- IBM POWER9 CPU + NVIDIA Volta GPU
- NVLink High Speed Interconnect
- 40 TFLOPS per Node, >3,400 Nodes
- 2017

SIERRA

Major Step Forward on the Path to Exascale
GPU COMPUTING AND DEEP LEARNING
TWO FORCES DRIVING THE FUTURE OF COMPUTING

40 Years of Microprocessor Trend Data

The Big Bang of Deep Learning
RISE OF NVIDIA GPU COMPUTING

The Big Bang of Deep Learning

GPU-Computing perf 1.5X per year

1.5X per year

Single-threaded perf

1000X by 2025

40 Years of Microprocessor Trend Data

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten New plot and data collected for 2010-2015 by K. Rupp
DEEP LEARNING EVERYWHERE

INTERNET & CLOUD
- Image Classification
- Speech Recognition
- Language Translation
- Language Processing
- Sentiment Analysis
- Recommendation

MEDICINE & BIOLOGY
- Cancer Cell Detection
- Diabetic Grading
- Drug Discovery

MEDIA & ENTERTAINMENT
- Video Captioning
- Video Search
- Real Time Translation

SECURITY & DEFENSE
- Face Detection
- Video Surveillance
- Satellite Imagery

AUTONOMOUS MACHINES
- Pedestrian Detection
- Lane Tracking
- Recognize Traffic Sign
DEEP NEURAL NETWORK
ANATOMY OF A FULLY CONNECTED LAYER

Lots of dot products

Each neuron calculates a dot product, M in a layer

$$x_1 = g(v_{x_1} \ast z)$$
COMBINE THE DOT PRODUCTS
What if we assemble the weights into a matrix?

Each neuron calculates a dot product, \(M \) in a layer

\[
x_1 = g(v_{x_1} * z)
\]

What if we assemble the weights as \([M, K]\) matrix?

Matrix-vector multiplication (GEMV)

Unfortunately ...

\(M*K+2*K \) elements load/store

\(M*K \) FMA math operations

This is memory bandwidth limited!
Can we turn this into a GEMM?

“Batching”: process several inputs at once

Input is now a matrix, not a vector

Weight matrix remains the same

$1 \leq N \leq 128$ is common

$$
\begin{pmatrix}
 a_{11} & a_{12} & \cdots & a_{1n} \\
 a_{21} & a_{22} & \cdots & a_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{n1} & a_{n2} & \cdots & a_{nn}
\end{pmatrix}
\begin{pmatrix}
 x_1 \\
 x_2 \\
 \vdots \\
 x_n
\end{pmatrix}
=
\begin{pmatrix}
 b_1 \\
 b_2 \\
 \vdots \\
 b_n
\end{pmatrix}
$$
GPU DEEP LEARNING — A NEW COMPUTING MODEL
AI IMPROVING AT AMAZING RATES

IMAGENET ACCURACY

SPEECH RECOGNITION ACCURACY
AI BREAKTHROUGHS

Recent Breakthroughs

2015

Atari Games

2016

“Superhuman” Image Recognition

AlphaGo Rivals World Champion

Conversational Speech Recognition

2017

Lip Reading
MODEL COMPLEXITY IS EXPLODING

2015 — Microsoft ResNet
7 ExaFLOPS
60 Million Parameters

2016 — Baidu Deep Speech 2
20 ExaFLOPS
300 Million Parameters

2017 — Google NMT
105 ExaFLOPS
8.7 Billion Parameters
NVIDIA DNN ACCELERATION
A COMPLETE DEEP LEARNING PLATFORM

MANAGE

TRAIN

DEPLOY

DIGITS

TensorRT

MANAGE / AUGMENT

TEST

TRAIN

PROTOTXT

EMBEDDED

DATA CENTER

AUTOMOTIVE

A COMPLETE DEEP LEARNING PLATFORM

MANAGE

TRAIN

DEPLOY

DIGITS

TensorRT

MANAGE / AUGMENT

TEST

TRAIN

PROTOTXT

EMBEDDED

DATA CENTER

AUTOMOTIVE
DNN TRAINING
NVIDIA DGX SYSTEMS
Built for Leading AI Research

https://youtu.be/8xYz46h3MJ0
NVIDIA DGX STATION
PERSONAL DGX

480 Tensor TFLOPS | 4x Tesla V100 16GB
NVLink Fully Connected | 3x DisplayPort
1500W | Water Cooled
NVIDIA DGX STATION
PERSONAL DGX

480 Tensor TFLOPS | 4x Tesla V100 16GB
NVLink Fully Connected | 3x DisplayPort
1500W | Water Cooled

$69,000
NVIDIA DGX-1 WITH TESLA V100
ESSENTIAL INSTRUMENT OF AI RESEARCH

960 Tensor TFLOPS | 8x Tesla V100 | NVLink Hybrid Cube
From 8 days on TITAN X to 8 hours
400 servers in a box
NVIDIA DGX-1 WITH TESLA V100

ESSENTIAL INSTRUMENT OF AI RESEARCH

960 Tensor TFLOPS | 8x Tesla V100 | NVLink Hybrid Cube

From 8 days on TITAN X to 8 hours

400 servers in a box

$149,000
DNN TRAINING WITH DGX-1
Iterate and Innovate Faster

NVIDIA DGX-1 Delivers 96X Faster Training

- DGX-1 with Tesla V100: 7.4 hours, 96X faster
- 8X GPU Server: 18 hours, 40X faster
- CPU-only Server: 711 hours

Relative Performance (Base on Time to Train)

Workload: ResNet50, 90 epochs to solution | CPU Server: Dual Xeon E5-2699 v4, 2.6GHz
DNN INFERENCE
TensorRT

High-performance framework makes it easy to develop GPU-accelerated inference

Production deployment solution for deep learning inference

Optimized inference for a given trained neural network and target GPU

Solutions for Hyperscale, ADAS, Embedded

Supports deployment of fp32, fp16, int8* inference

* int8 support will be available from v2

TensorRT for Data Center

- Image Classification
- Object Detection
- Image Segmentation

TensorRT for Automotive

- Pedestrian Detection
- Lane Tracking
- Traffic Sign Recognition

NVIDIA DRIVE PX 2
TensorRT Optimizations

- Fuse network layers
- Eliminate concatenation layers
- Kernel specialization
- Auto-tuning for target platform
- Tuned for given batch size

Optimized inference runtime
NVIDIA TENSORRT
Programmable Inference Accelerator

Weight & Activation Precision Calibration | Layer & Tensor Fusion
Kernel Auto-Tuning | Multi-Stream Execution
V100 INFEERENCE
Datacenter Inference Acceleration

• 3.7x faster inference on V100 vs. P100
• 18x faster inference on TensorFlow models on V100
• 40x faster than CPU-only
AUTONOMOUS VEHICLE TECHNOLOGY
AI IS THE SOLUTION TO SELF DRIVING CARS

- PERCEPTION
- REASONING
- DRIVING
- HD MAP
- MAPPING
- AI COMPUTING
NVIDIA’s next-generation Pascal graphics architecture

1.5 teraflops

NVIDIA’s next-generation ARM 64b Denver 2 CPU

Functional safety for automotive applications
DRIVE PX 2 COMPUTE COMPLEXES

2 Complete AI Systems
Pascal Discrete GPU
1,280 CUDA Cores
4 GB GDDR5 RAM

Parker SOC Complex
256 CUDA Cores
4 Cortex A57 Cores
2 NVIDIA Denver2 Cores
8 GB LPDDR4 RAM
64 GB Flash

Safety Microprocessor
Infineon AURIX Safety Microprocessor
ASIL D
NVIDIA DRIVE PLATFORM
Level 2 -> Level 5

DRIVE PX 2
2 PARKER + 2 PASCAL GPU | 20 TOPS DL | 120 SPECINT | 80W

DRIVE PX (Xavier)
30 TOPS DL | 160 SPECINT | 30W
ANNOUNCING XAVIER DLA
NOW OPEN SOURCE

http://nvdla.org/
NVIDIA DRIVE
END TO END SELF-DRIVING CAR PLATFORM

Caffe
CNTK
KALDI
TensorFlow
theano
torch

Training on DGX-1

NVIDIA DGX-1

NVIDIA DRIVE PX2

Driving with DriveWorks

MAPPING
LOCALIZATION
DRIVENET
PILOTNET
DRIVING AND IMAGING
CURRENT DRIVER ASSIST

SENSE
FPGA
CV ASIC

PLAN
CPU

ACT
WARN
BRAKE
CURRENT DRIVER ASSIST

SENSE
FPGA
CV ASIC

PLAN
CPU

ACT
WARN
BRAKE
FUTURE AUTONOMOUS DRIVING SYSTEM

SENSE
- FPGA
- CV ASIC

PLAN
- CPU

ACT
- WARN
- BRAKE
- STEER
- ACCELERATE
NVIDIA BB8 AI CAR — LEARNING BY EXAMPLE
BB8 SELF-DRIVING CAR DEMO

https://blogs.nvidia.com/blog/2017/01/04/bb8-ces/

https://youtu.be/fmVWLr0X1Sk
WORKING @ NVIDIA
OUR CULTURE

A LEARNING MACHINE

INNOVATION
“willingness to take risks”

ONE TEAM
“what’s best for the company”

INTELLECTUAL HONESTY
“admit mistakes, no ego”

SPEED & AGILITY
“the world is changing fast”

EXCELLENCE
“hold ourselves to the highest standards”
A GREAT PLACE TO WORK

11,000 employees — Tackling challenges that matter
Top 50 “Best Places to Work” — Glassdoor
#1 of the “50 Smartest Companies” — MIT Tech Review
We’re hiring interns and new college grads. Come join the industry leader in virtual reality, artificial intelligence, self-driving cars, and gaming.

Learn more at: www.nvidia.com/university
THANK YOU