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Internet of Things (IoT)
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An estimated 30 billion 
internet-connected devices 
by 2020

And that the amount of data 
produced will be over 
40 trillion gigabytes

Source: BI Intelligence Estimates

35% CAGR
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The AI revolution
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The computing challenge
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IBM’s Watson in Jeopardy!

Conventional von Neumann 
computing architecture

Input data Results

MEMORY

CPU

2880 processor threads
16 terabytes of RAM
80 kW of power
20 tons of air-conditioned cooling capacity

~80,000 W~20W
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The computing challenge
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Machine 
Learning

Deep 
Learning
Many-layer neural 

networks

Advanced 
Analytics: 
NoSQL, 
Hadoop &
Analytics

“Human intelligence” exhibited by machines

Cognitive / AI

Learning without explicit programming 

 WEEKs to train certain deep 
neural networks!

Largely CPUs

CPUs, FPGAs, GPUs

GPUs to train;
CPUs, FPGAs to inference;
Race to ASICs

Landscape of AI Algorithms
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Advances in von Neumann computing
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Burr et al., IBM J. Res. Dev., 2008 Wong, Salahuddin, Nature Nano., 2015

Monolithic 3D integrationStorage class memory

CPU

MEMORY

CMOS 
Processing 

Units

Processor-in-memory
(near memory computing)

Vermij et al., Proc. ACM CF, 2016

 Still confined within the von Neumann paradigm
 Minimize the time and distance to memory access
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Beyond von Neumann: In-memory computing
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Processing unit & Conventional memory

 Perform “certain” computational tasks using “certain” memory cores/units without the 
need to shuttle data back and forth in the process
 Logical operations
 Arithmetic operations
 Machine learning algorithms

 Exploits the physical attributes and state dynamics of the memory devices

Processing unit & Computational memory
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Constituent elements of computational memory
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 Difference in atomic arrangements induced by the application of electrical pulses 
and measured as a difference in electrical resistance

 Resistive memory devices or memristive devices
 Based on physical mechanisms such as ionic drift and phase transition

p-Si
n+ n+

Control 
gate

Floating 
gate

p-Si
n+ n+

BL
WL

“Charge on a capacitor”

Capacitor

“Alternate atomic arrangements”

Metal-oxide
Phase-change 
material
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Phase-change memory
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Ge(In, Ag, Sn)

Sb(Bi, Au, As)Te

GeTe

Sb2Te3

 A nanometric volume of phase-change material 

between two electrodes

 “WRITE” Process 

 By applying a voltage pulse the material 

can be changed from the crystalline phase 

(SET) to the amorphous phase (RESET) 

 “READ” process

 Low-field electrical resistance
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Multi-level storage capability
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“00”

“01”

“10”

“11”

 Possible to achieve intermediate phase configurations

 Can achieve a continuum of resistance/conductance levels

 Essentially an analog storage device!

Burr et al., IEEE JETCAS, 2016; Sebastian et al., Proc. E\PCOS, 2016
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Rich dynamic behavior
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Strong field and 
temperature 
dependence

Nanoscale thermal transport, 
thermoelectric effects

Phase transitions, 
structural relaxation

Sebastian et al., Nature Comm., 2014; Le Gallo et al., New J. Phys., 2015; Le Gallo et al., JAP, 2016; Sebastian et al., IRPS 2015

 Feedback interconnection of electrical, thermal and structural dynamics
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Logic design using resistive memory devices

18

Y

X
S

C

 Voltage serves as the single logic state variable in conventional CMOS

 CMOS gates regenerate this state variable during computation

 How about using the resistance state of memristive devices as a state variable?

 Can toggle the states by applying voltage signals; only binary storage required

 Logical operations enabled by the interaction between voltage and resistance state 

variables

X

Y

C

High resistance (Logic “0”)

Low resistance (Logic “1”)S

Vourkas, Sirakoulis, IEEE CAS Magazine, 2017Borghetti et al., Nature, 2010
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Stateful logic
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Kvatinsky et al., IEEE TCAS, 2014

IN1

IN2

OUT
Vc

“0”

“0”

“1”
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IN1
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“0”
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IN1

IN2
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0 0 1

0 1 0

1 0 0

1 1 0

NOR

 Stateful logic exhibited by certain memristive logic families

 The Boolean variable is represented only in terms of the resistance state
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Bulk bitwise operations
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VC

VC

VISO

VISO

“1” “1” “1” “1” “1”

“0” “1” “0” “1” “1”

“0” “1” “1” “0” “1”

“1” “0” “0” “0” “0”

 Can perform bulk bit-wise operations in a cross-bar array

 Each processing task can be divided into a sequence of such operations

Talati et al., IEEE Trans. on Nanotech., 2016
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Matrix-vector multiplication
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=

MAP to 
conductance 

values

MAP to read 
voltage

DECIPHER 
from the 
current

 By arranging the memristive devices in a cross-bar configuration, one can perform 
matrix-vector operation with O(1) complexity

 Exploits multi-level storage capability and Kirchhoff’s circuits laws
 Can also implement multiplication with the matrix transpose

Burr et al., Adv. Phys: X, 2017

Zidan et al., Nature Electronics, 2018
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Storing a matrix element in a PCM device
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Iterative 
programming 

algorithm

+

-

 An iterative programming scheme is typically used to store the matrix elements in a 
PCM device

Distribution of conductance 
values in a large array
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Scalar multiplication using PCM devices
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 Experimental characterization of scalar multiplication based on Ohm’s law
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Application: Compressed sensing and recovery
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 Compressed sensing: Acquire a large signal at sub-Nyquist sampling rates and 

subsequently reconstruct that signal accurately

 Sampling and compression done simultaneously

 Used in various applications such as MRI, facial recognition, holography, audio restoration 

or in mobile-phone camera sensors (allows significant reduction in the acquisition energy 

per image)

High-dimensional 
signal

High-dimensional 
signal

(recovered)

Compressed 
measurements
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Compressed sensing using computational memory
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Measurement Iterative reconstruction (AMP Algorithm)

 Store the measurement matrix in a cross-bar array of resistive memory devices

 The same array used for both compression and reconstruction

 Reconstruction complexity reduction: O(NM) → O(N)

Le Gallo et al., Proc. IEDM, 2017
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Compressive imaging: Experimental results
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Experimental result: 128X128 image, 50% sampling rate, 
Computation memory unit with 131,072 PCM devices

 Reasonable reconstruction accuracy achieved despite inaccuracies

 Estimated power reduction of 50x compared to using an optimized 4-bit FPGA matrix-

vector multiplier that delivers same reconstruction accuracy at same speed
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Can we compute with device dynamics?
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 Depending on the operation, a suitable electrical signal is applied
 The conductance of the devices evolves in accordance with the electrical input 
 The result of the operation is imprinted in the memory devices
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Crystallization dynamics in PCM
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Sebastian et al., Nature Communications, 2014

 With successive application of current pulses, we get progressive crystallization
 Higher amplitude  More crystallization and high conductance

A nanoscale non-volatile integrator
“Accumulative behavior”
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Example 1: Finding the factors of numbers
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Pulses

X
Check if 4 is a factor of 8

L

H

YES

NO

Schematic illustration

Check if 4 is a factor of 10

 Assume that a PCM device goes to a low resistance 

state by the application of X number of pulses

 To check if X is a factor of Y, apply Y number of pulses 

and check if the device is in the low resistance state 

after the application of the pulses

Hosseini et al., EDL, 2017
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Finding the factors of numbers in parallel
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 Can perform this operation to find factors of a number in parallel

 Simple demonstration of the ability to perform higher-level computational primitives

 Multiple devices needed to increase the accuracy

Y pulses

X=4X=13 X=11 X=9 X=6

Experimental results
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Example 2: Unsupervised learning of correlations
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Algorithmic goals

Use only unsupervised learning & consume very low power

FINANCE SCIENCE MEDICINE BIG DATA

 Find temporal correlations between event-based 

data streams in an unsupervised manner

 Gain selectivity specifically to the correlated inputs

 Observe variations in the activity of the correlated 

input

 Quickly react to occurrence of coincident inputs in 

the correlated inputs

 Continuously and dynamically re-evaluate the 

learned statistics
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Realization using computational memory
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Modulate the amplitude or width based on 

 Devices interfaced to the correlated processes go to a 

high conductance state

Sebastian et al., Nature Communications, 2017
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Experimental results (1 Million PCM devices)
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Processes Device conductance

 A million pixels representing a million binary random processes
 The million processes assigned to a million PCM devices in a PCM chip
 The PCM devices interfaced to the correlated processes go to a high conductance state
 Result of the computation imprinted on the devices!
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Comparative study 
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 We expect a 200x improvement in computation time! 

 Peak dynamic power on the order of watts compared to hundreds of Watts
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The challenge of imprecision!
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Initial point

Solution

 Many computational tasks can be formulated as a sequence of low- and high-precision 
components
 Step 1: An approximate solution is obtained (high computational load)
 Step 2: Resulting error in the overall objective is calculated accurately (low comp. load)
 The approximate solution is adapted (repeating step 1)
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Mixed-precision in-memory computing
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System bus
High-precision 
processing unit

Low-precision 
computational memory

Memory

ALU Control
Control Unit

CPU Data 
Transfers 

(small)

Le Gallo et al., “Mixed-precision in-memory computing”, ArXiv, 2017

 Use a low precision computational memory unit to obtain the approximate solution

 A von Neumann machine to calculate the error precisely

 Bulk of the computation still realized in computational memory

 Significant areal/power/speed improvements retained while addressing the key 

challenge of inexactness associated with computational memory
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Application 1: Mixed-precision linear solver
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D
A

C
/A

D
C

DAC/ADC

Programming circuit

Computational memory unitHigh-precision unit

 Solution iteratively updated with low-precision error-correction terms

 Correction terms are obtained using an inexact inner solver 

 The matrix multiplications in the inner solver are performed using computational memory
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Mixed-precision linear solver: Experimental results
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 Experimental results using model covariance matrices of different sizes
 The matrix multiplications in the inner solver are performed using PCM devices (90 nm)
 High-precision iterative refinement ensures that the accuracy is not limited by the 

precision of the computational memory unit
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Application to gene interaction networks
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Normal tissue Cancer tissue

 Gene interaction network (interactome) from RNA expression measurements

 The inverse covariance from RNA measurements of 946 tumor cells and 946 normal cells 

calculated with mixed-precision in-memory computing
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Comparative study

43

System-level measurements: POWER8 CPU as high-precision 
processing unit, simulated in-memory computing unit

 Significant improvement in time/energy to solution predicted for large matrices over 

CPU-only and GPU-only implementations

 More accurate in-memory computing  Higher gain in performance
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Application 2: Training deep neural networks
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 Multiple layers of parallel processing units (neurons) interconnected by plastic synapses

 By tuning the synaptic weights (training), able to solve certain classification tasks 

remarkably well

 Training based on a global supervised learning algorithm  Backpropagation

 Brute force optimization: Multiple days or weeks to train state-of-the-art networks on von 

Neumann machines (CPU,GPU clusters)

LeCun, Bengio, Hinton, Nature, 2015

SynapsesNeurons
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Mixed-precision deep learning
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D
A

C
/A

D
C

DAC/ADC

Programming 
circuit

Forward propagation

Backward propagation

Weight update

Computational memory unitHigh-precision unit

 Synaptic weights always reside in the computational memory 
 Forward/backward propagation performed in place (with low precision)
 The desired weight updates accumulated in high precision
 Programming pulses issued to the memory devices to alter the synaptic weights

Synaptic weight
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Results
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 MNIST handwritten digit classification problem

 Two PCM devices in differential configurations to represent a synapse

 Device-model-based network simulation achieves 97.78% test accuracy

Nandakumar et al., arXiv:1712.01192, 2017
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Summary
 Immense computing challenge associated with the explosive growth of data-centric AI 

applications

 Computational memory: A memory unit that performs certain computational tasks in place

 Resistive memory devices are considered to play a key role in computational memory

 Computational memory: Logical operations 

– Resistance as a logic state variable enables seamless integration of processing and storage

 Computational memory: Arithmetic operations

– Matrix-vector multiplications can be performed with O(1) complexity

– Wide range of applications in optimization problems such as compressed sensing and recovery

 Computational memory: Computing with device dynamics

– The accumulative behavior exhibited by certain memory devices can be used to perform rather high-

level computational tasks such as finding factors of numbers in parallel and unsupervised learning of 

temporal correlations

 Mixed-precision in-memory computing

– A significant step towards tackling the imprecision associated with computational memory 

– Applications include solving systems of linear equations and training deep neural networks

47
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Outlook: The evolution of our computing systems

CENTRAL PROCESSING UNIT

MEMORY (e.g. DRAM) 
(volatile, fast)

STORAGE 
(e.g. Flash, HDD) 
(nonvolatile, slow)

STORAGE-CLASS 
MEMORY

CMOS 
processing units

von Neumann 
accelerators
(e.g. GPUs, 

ASICs)

High-speed memory

COMPUTATIONAL
MEMORY

NEUROMORPHIC 
CO-PROCESSORS
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BACK-UP
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Experimental platform

53

Sebastian et al., Nature Communications, 2017

 Experimental platform built around a prototype multi-level PCM chip that comprises 

3 million devices

 The PCM chip is organized as a matrix of world lines and bit lines

 It also integrates the associated read/write circuitries
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Projected memory
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 Carefully designed layer of non-insulating projection 
segment parallel to the phase-change segment

 Write operation not affected
 During read, the current flows around the amorphous 

phase
 Significant reduction in noise, drift and drift variability 

expected

Koelmans et al., Nature Communications, 2015
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Multi-memristive architectures

55

 Represent weights/matrix elements using multiple devices

 Only a subset of the devices programmed at any instance, but all devices read in parallel

 A global clock-based arbitration for device selection and to tune the conductance 

response curve

Boybat et al., arXiv:1711.06507, 2017


