
Counter Braids: A novel counter architecture

Joint work with:
Yi Lu, Andrea Montanari, Sarang Dharmapurikar and Abdul Kabbani

High Performance
Switching and Routing
Telecom Center Workshop: Sept 4, 1997. Balaji PrabhakarBalaji Prabhakar

Stanford University

2

Overview

• Counter Braids
– Background: current approaches

• Exact, per-flow accounting
• Approximate, large-flow accounting

– Our approach
• The Counter Braid architecture
• A simple, efficient message passing algorithm

– Performance, comparisons and further work

• Congestion notification in Ethernet
– Overview of IEEE standards effort

3

Traffic Statistics: Background
• Routers collect traffic statistics; useful for

– Accounting/billing, traffic engineering, security/forensics
– Several products in this area; notably, Cisco’s NetFlow, Juniper’s cflowd, Huawei’s

NetStream

• Other areas
– In databases: number and count of distinct items in streams
– Web server logs

• Key problem: At high line rates, memory technology is a limiting factor
– 500,000+ active flows, packets arrive once every 10 ns on 40 Gbps line
– We need fast and large memories for implementing counters: v.expensive

• This has spawned two approaches
– Exact, per-flow accounting: Use hybrid SRAM-DRAM architecture
– Approximate, large-flow accounting: Use heavy-tailed nature of flow size distribution

4

Per-flow Accounting

• Naïve approach: one counter per flow

F1
F2

Fn

43

4

15

LSB MSB

44

4

15

LSB MSB

• Problem: Need fast and large memories; infeasible

5

An initial approach
Shah, Iyer, Prabhakar, McKeown (2001)

• Hybrid SRAM-DRAM architecture
– LSBs in SRAM: high-speed updates, on-chip
– MSBs in DRAM: less frequent updates; can use slower speed, off-chip DRAMs

F1
Fl2

Fn

35
4

15

SRAM DRAM

Interconnect
-- Speed: L/S

Counter Mgmt
Algorithm

• Result: Under adversarial inputs, the minimum number of bits for
each SRAM counter:

6

Related work
• Ramabhadran and Varghese (2003) obtained a simpler version of the LCF algorithm
• Zhao et al (2006) randomized the initial values in the SRAM counters to prevent the

adversary from causing several counters to overflow closely

• Main problem of exact methods
– Can’t fit counters into single SRAM
– Need to know the flow-counter association

• Need perfect hash function; or, fully associative memory (e.g. CAM)

SRAM DRAM

Interconnect
-- Speed: L/SCMA SRAM

FIFO

F1
Fl2

Fn

7

Approximate counting
• Statistical in nature

– Use heavy-tailed (Pareto) distribution of network flow sizes
• 80% of data brought by the biggest 20% of the flows

– So, quickly identify these big flows and count their packets

• Sample and hold: Estan et al (2004)

Large flow?

Packets off of
the wire

Yes

No
Counter

Array

• Given the cost of memory, it strikes an good trade-off
– Moreover, the flow-to-counter association problem is manageable
– But, the counts are very approximate

8

Summary

• Exact counting methods
– Space intensive, complex

• Approximate methods
– Focus on large flows, inaccurate

• Problems to address
– Save space
– Get rid of flow-to-counter association problem

9

Compress Space via Braiding

• Save counter space by “braiding” counters
– Give nearly exclusive LSBs, share MSBs

LSBs Shared
MSBs

10

Counter Braids for Measurement
(in anticipation)

Elephant Traps
Few, deep counters

Mouse Traps
Many, shallow counters

Status bit
Indicates overflow

11

Counting with CBs

12

Multiple hashes to get rid of
flow-to-counter association problem

• Multiple hash functions
– Single hash function leads to collisions
– However, one can use two or more hash functions and use the

redundancy to recover the flow size

1

2

35

3

0

3

35

3

55

1

2

35

3

2

6

36

3

455

• Need efficient decoding algorithm for solving C = MF
– Invert C --> F

13

Decoder 1: The MLE

• Theorem (Lu, Montanari, P): The MLE decoder is optimal; that is,
the space needed asymptotically equals H(F)
– This is interesting because C is a linear, incremental function of the data, F

• Consider a single stage of counters and multiple (random) hash
functions
– Let F be the vector of flow sizes, and C = MF be the vector of counter values;

where M is the (random) adjacency matrix of dimensions m x n; m < n
– Let {fi} be IID, and let H(F) be the entropy of the flow-size vector

• The MLE decoder
– For an instance of the problem, let F1, …, Fk be the list of all

solutions
– FMLE is that solution which is most likely; i.e. if Pflow is the flow size

distribution, then
 FMLE = argmini { D(Fi||PFLOW) }

14

Related Work

• Compressed sensing
– Storing sparse vectors using random linear transformations

• Candes and Tao, Donoho, Indyk, Muthukrishnan, Wainwright, et al

• Problem statement
 minimize ||F||1 subject to C = MF
– Main result of CS: reconstruction is exact if F is sparse

• But, for us
– Linear transformations not necessarily sparse: lot of updating
– LP decoding: worst-case cubic complexity

• Noiseless data compression with LDPC codes
– Use regular graphs (i.e. not hash-based)

• Caire, Shamai, Verdu, and Aji, Jin, Khandekar, MacKay, McEliece

15

Practical algorithms:
The Count-Min Algorithm

• This algorithm is due to Cormode and Muthukrishnan
– Algorithm: Estimate flow j’s size as the minimum counter it hits
– The flow sizes for the example below would be estimated as: 34, 34, 32

• Major drawbacks
– Need lots of counters for accurate estimation
– Don’t know how much the error is; in fact, don’t know if there is an error

• We shall see that applying the “Turbo-principle” to this algorithm gives
terrific results

1

1

32

34

34

32

16

The Turbo-principle

17

Example

Count-Min

34

34

32

Iter 1

0

0

0

Iter 0

1

1

1

Iter 2

1

1

32

Iter 3

1

1

32

Iter 4

1

1

32

34

34

32

18

Properties of the MP Algorithm

• Anti-monotonicity: With initial estimates of 1 for the flow sizes,

Flow index

Flow size

• Note: Because of this property, estimation errors are both
detectable and have a bound!

19

When does the sandwich close?
• Answer 1: No assumption on flow size distribution.

– Suppose we use k hash functions. Then, if m > k(k-1)n, the counters--flows
graph becomes a tree and decoding is exact.

• Answer 2: Given the flow size distrubution.
– Using the “density evolution” technique of Coding Theory, one can show that

it suffices for m > c*n, where
 c* =

– This means for heavy-tailed flow sizes, where there are approximately 35%
1-packet flows, c* is roughly 0.8

20

Threshold, c*= 0.72

Fr
ac

tio
n

of
 fl

ow
s

in
co

rre
ct

ly
de

co
de

d

Iteration number

Count-Min’s error

Reduced due to the Turbo-
principle

21

The 2-stage Architecture: Counter Braids

-- First stage: Lots of shallow counters

-- Second stage: V.few deep counters

-- First stage counters hash into the
second stage; an “overflow” status bit
on first stage counters indicates if the
counter has overflowed to the second
stage

-- If a first stage counter overflows, it
resets and counts again; second stage
counters track most significant bits

-- Apply MP algorithm recursively

Elephant Traps
Few, deep counters

Mouse Traps
Many, shallow counters

22

Counter Braids vs. the One-layer
Architecture

0 1 2 3 4 5 6 7 8 9
10

-4

10
-3

10
-2

10
-1

10
0

bits per flow

p
r
o
p
o
r
t
i
o
n

o
f

f
l
o
w
s

i
n
c
o
r
r
e
c
t
l
y

d
e
c
o
d
e
d

one layer

two layers

entropy
2-layer

threshold

1-layer
threshold

Number of counter bits per flow

Fr
ac

tio
n

of
 fl

ow
s

in
co

rre
ct

ly
de

co
de

d

One layer

Two layers

23

Internet Trace Simulations

• Used two OC-48 (2.5 Gbps) one-hour contiguous traces collected
by CAIDA at a San Jose router.

• Divided traces into 12 5-minute segments.
– Trace 1: 0.9 million flows and 20 million packets per segment
– Trace 2: 0.7 million flows and 9 million packets per segment

• We used total counter space of 1.28 MB.

• We ran 50 experiments, each with different hash functions. There
were a total of 1200 runs. No error was observed.

24

Comparison

Lossless
recovery.

Pe ~ 1

avg abs error
= 24.7

Fractional
Large: 0.03745%
Medium: 1.090%
Small: 43.87%

ExactError

Not neededNot needed1.6 Mbit> 25 Mbit
Memory Size

(SRAM)
flow-to-counter

association

10 Mbit10 Mbit1 Mbit
4.5 Mbit

(31.5 Mbit in
DRAM + counter-

management)

Memory Size
(SRAM)
counters

900,000900,00098,000900,000Number of
flows

All flow sizes.
Exact.

All flow sizes.
Approximate.

Elephant flows.
Approximate.

All flow sizes.
Exact.Purpose

Counter BraidsCount-MinSample-and-HoldHybrid

25

Conclusions for Counter Braids

• Cheap and accurate solution to the network traffic
measurement problem
– Good initial results

• Further work
– Lossy compression
– Multi-router solution: same flow passes through many

routers

Congestion Notification in Ethernet:
Part of the IEEE 802.1 Data Center Bridging

standardization effort

High Performance
Switching and Routing
Telecom Center Workshop: Sept 4, 1997. Balaji PrabhakarBerk Atikoglu, Abdul Kabbani, Balaji Prabhakar

Stanford University

Rong Pan
Cisco Systems

Mick Seaman

27

Background

• Switches and routers send congestion signals to end-systems
to regulate the amount of network traffic.
– Two types of congestion.

• Transient: Caused by random fluctuations in the arrival rate of
packets, and effectively dealt with using buffers and link-level pausing
(or dropping packets in the case of the Internet).

• Oversubscription: Caused by an increase in the applied load either
because existing flows send more traffic, or (more likely) because new
flows have arrived.

– We’ve been developing QCN (for Quantized Congestion
Notification), an algorithm which is being studied as a part of the
IEEE 802.1 Data Center Bridging group for deployment in Ethernet

28

Switched Ethernet vs Internet
• Some significant differences …

1. There is no end-to-end signaling in the Ethernet a la per-packet acks in the
Internet
• So congestion must be signaled to the source by switches
• Not possible to know round trip time!
• Algorithm not automatically self-clocked (like TCP)

2. Links can be paused; i.e. packets may not be dropped
3. No sequence numbering of L2 packets
4. Sources do not start transmission gently (like TCP slow-start); they can

potentially come on at the full line rate of 10Gbps
5. Ethernet switch buffers are much smaller than router buffers (100s of KBs

vs 100s of MBs)
6. Most importantly, algorithm should be simple enough to be implemented

completely in hardware

• An interesting environment to develop a congestion control algorithm
• QCN derived from the earlier BCN algorithm
• Closest Internet relatives: BIC TCP at source, REM/PI controller at switch

