### **Counter Braids: A novel counter architecture**

### Balaji Prabhakar Stanford University

Joint work with:

Yi Lu, Andrea Montanari, Sarang Dharmapurikar and Abdul Kabbani

### **Overview**

- Counter Braids
  - Background: current approaches
    - · Exact, per-flow accounting
    - Approximate, large-flow accounting
  - Our approach
    - The Counter Braid architecture
    - A simple, efficient message passing algorithm
  - Performance, comparisons and further work

- Congestion notification in Ethernet
  - Overview of IEEE standards effort

# **Traffic Statistics: Background**

- Routers collect traffic statistics; useful for
  - Accounting/billing, traffic engineering, security/forensics
  - Several products in this area; notably, Cisco's NetFlow, Juniper's cflowd, Huawei's NetStream
- Other areas
  - In databases: number and count of distinct items in streams
  - Web server logs
- Key problem: At high line rates, memory technology is a limiting factor
  - 500,000+ active flows, packets arrive once every 10 ns on 40 Gbps line
  - We need fast and large memories for implementing counters: v.expensive
- This has spawned two approaches
  - Exact, per-flow accounting: Use hybrid SRAM-DRAM architecture
  - Approximate, large-flow accounting: Use heavy-tailed nature of flow size distribution

# **Per-flow Accounting**

Naïve approach: one counter per flow



Problem: Need fast and large memories; infeasible

## An initial approach

### Shah, Iyer, Prabhakar, McKeown (2001)

- Hybrid SRAM-DRAM architecture
  - LSBs in SRAM: high-speed updates, on-chip
  - MSBs in DRAM: less frequent updates; can use slower speed, off-chip DRAMs



 Result: Under adversarial inputs, the minimum number of bits for each SRAM counter:

$$\log\left(\frac{\log(SN)}{\log(S/S-1)}\right) \approx \log\log N$$

### Related work

- Ramabhadran and Varghese (2003) obtained a simpler version of the LCF algorithm
- Zhao et al (2006) randomized the initial values in the SRAM counters to prevent the adversary from causing several counters to overflow closely



- Main problem of exact methods
  - Can't fit counters into single SRAM
  - Need to know the flow-counter association
    - Need perfect hash function; or, fully associative memory (e.g. CAM)

## **Approximate counting**

- Statistical in nature
  - Use heavy-tailed (Pareto) distribution of network flow sizes
    - 80% of data brought by the biggest 20% of the flows
  - So, quickly identify these big flows and count their packets
- Sample and hold: Estan et al (2004)



- Given the cost of memory, it strikes an good trade-off
  - Moreover, the flow-to-counter association problem is manageable
  - But, the counts are very approximate

# Summary

- Exact counting methods
  - Space intensive, complex
- Approximate methods
  - Focus on large flows, inaccurate

- Problems to address
  - Save space
  - Get rid of flow-to-counter association problem

# **Compress Space via Braiding**

- Save counter space by "braiding" counters
  - Give nearly exclusive LSBs, share MSBs





### **Counter Braids for Measurement**

(in anticipation)



# **Counting with CBs**



# Multiple hashes to get rid of flow-to-counter association problem

- Multiple hash functions
  - Single hash function leads to collisions
  - However, one can use two or more hash functions and use the redundancy to recover the flow size



- Need efficient decoding algorithm for solving C = MF
  - Invert C --> F

### **Decoder 1: The MLE**

- Consider a single stage of counters and multiple (random) hash functions
  - Let F be the vector of flow sizes, and C = MF be the vector of counter values;
     where M is the (random) adjacency matrix of dimensions m x n; m < n</li>
  - Let {f<sub>i</sub>} be IID, and let H(F) be the entropy of the flow-size vector
- The MLE decoder
  - For an instance of the problem, let F<sup>1</sup>, ..., F<sup>k</sup> be the list of all solutions
  - F<sup>MLE</sup> is that solution which is most likely; i.e. if P<sub>flow</sub> is the flow size distribution, then

```
F^{MLE} = argmin_i \{ D(F^i IIP_{FLOW}) \}
```

- Theorem (Lu, Montanari, P): The MLE decoder is optimal; that is, the space needed asymptotically equals H(F)
  - This is interesting because C is a linear, incremental function of the data, F

### **Related Work**

- Compressed sensing
  - Storing sparse vectors using random linear transformations
    - Candes and Tao, Donoho, Indyk, Muthukrishnan, Wainwright, et al
- Problem statement
  - minimize IIFII<sub>1</sub> subject to C = MF
  - Main result of CS: reconstruction is exact if F is sparse
- But, for us
  - Linear transformations not necessarily sparse: lot of updating
  - LP decoding: worst-case cubic complexity
- Noiseless data compression with LDPC codes
  - Use regular graphs (i.e. not hash-based)
    - · Caire, Shamai, Verdu, and Aji, Jin, Khandekar, MacKay, McEliece

# Practical algorithms: The Count-Min Algorithm

- This algorithm is due to Cormode and Muthukrishnan
  - Algorithm: Estimate flow j's size as the minimum counter it hits
  - The flow sizes for the example below would be estimated as: 34, 34, 32



- Major drawbacks
  - Need lots of counters for accurate estimation
  - Don't know how much the error is; in fact, don't know if there is an error
- We shall see that applying the "Turbo-principle" to this algorithm gives terrific results

## The Turbo-principle



#### 1: Initialize

- 2: min = minimum possible flow size;
- 3:  $\nu_{ia}(0) = \min \forall i \in I \text{ and } a \in R;$
- 4:  $c_a = a^{th}$  counter value

#### 5: Iterations

6: for iteration number t = 1 to niter

7: 
$$\mu_{ai}(t) = \max \left\{ \left( c_a - \sum_{j \neq i} \nu_{ja}(t-1) \right), \min \right\};$$

8: 
$$\nu_{ia}(t) = \begin{cases} \min_{b \neq a} \mu_{bi}(t) & \text{if } t \text{ is odd,} \\ \max_{b \neq a} \mu_{bi}(t) & \text{if } t \text{ is even.} \end{cases}$$

#### 9: Final Estimate

10: 
$$\widehat{f}_i(t) = \begin{cases} \min_a \{ \mu_{ai}(niter) \} & \text{if } t \text{ is odd,} \\ \max_a \{ \mu_{ai}(niter) \} & \text{if } t \text{ is even.} \end{cases}$$

# **Example**



## **Properties of the MP Algorithm**

Anti-monotonicity: With initial estimates of 1 for the flow sizes,

$$\hat{f}_i(2t) \le \hat{f}_i(2t+2) \le \dots \le \hat{f}_i \le \dots \le \hat{f}_i(2t+3) \le \hat{f}_i(2t+1)$$



 Note: Because of this property, estimation errors are both detectable and have a bound!

### When does the sandwich close?

- Answer 1: No assumption on flow size distribution.
  - Suppose we use k hash functions. Then, if m > k(k-1)n, the counters--flows graph becomes a tree and decoding is *exact*.



- Answer 2: Given the flow size distrubution.
  - Using the "density evolution" technique of Coding Theory, one can show that it suffices for m > c\*n, where

$$\mathbf{c}^{\star} = \sqrt{P(f > min)}$$

This means for heavy-tailed flow sizes, where there are approximately 35%
 1-packet flows, c\* is roughly 0.8

# **Threshold**, **c**\*= **0.72**



## The 2-stage Architecture: Counter Braids



Mouse Traps
Many, shallow counters

- -- First stage: Lots of shallow counters
- -- Second stage: V.few deep counters
- -- First stage counters hash into the second stage; an "overflow" status bit on first stage counters indicates if the counter has overflowed to the second stage
- -- If a first stage counter overflows, it resets and counts again; second stage counters track most significant bits
- -- Apply MP algorithm recursively

# Counter Braids vs. the One-layer Architecture



### **Internet Trace Simulations**

- Used two OC-48 (2.5 Gbps) one-hour contiguous traces collected by CAIDA at a San Jose router.
- Divided traces into 12 5-minute segments.
  - Trace 1: 0.9 million flows and 20 million packets per segment
  - Trace 2: 0.7 million flows and 9 million packets per segment
- We used total counter space of 1.28 MB.
- We ran 50 experiments, each with different hash functions. There were a total of 1200 runs. No error was observed.

# Comparison

|                                                         | Hybrid                                                      | Sample-and-Hold                                                  | Count-Min                       | Counter Braids            |
|---------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------|---------------------------------|---------------------------|
| Purpose                                                 | All flow sizes.<br>Exact.                                   | Elephant flows.<br>Approximate.                                  | All flow sizes.<br>Approximate. | All flow sizes.<br>Exact. |
| Number of flows                                         | 900,000                                                     | 98,000                                                           | 900,000                         | 900,000                   |
| Memory Size<br>(SRAM)<br>counters                       | 4.5 Mbit<br>(31.5 Mbit in<br>DRAM + counter-<br>management) | 1 Mbit                                                           | 10 Mbit                         | 10 Mbit                   |
| Memory Size<br>(SRAM)<br>flow-to-counter<br>association | > 25 Mbit                                                   | 1.6 Mbit                                                         | Not needed                      | Not needed                |
| Error                                                   | Exact                                                       | Fractional<br>Large: 0.03745%<br>Medium: 1.090%<br>Small: 43.87% | Pe ~ 1 avg abs error = 24.7     | Lossless<br>recovery.     |

### **Conclusions for Counter Braids**

- Cheap and accurate solution to the network traffic measurement problem
  - Good initial results
- Further work
  - Lossy compression
  - Multi-router solution: same flow passes through many routers

# Congestion Notification in Ethernet: Part of the IEEE 802.1 Data Center Bridging standardization effort

Berk Atikoglu, Abdul Kabbani, Balaji Prabhakar Stanford University

Rong Pan
Cisco Systems

Mick Seaman

## **Background**

- Switches and routers send congestion signals to end-systems to regulate the amount of network traffic.
  - Two types of congestion.
    - Transient: Caused by random fluctuations in the arrival rate of packets, and effectively dealt with using buffers and link-level pausing (or dropping packets in the case of the Internet).
    - Oversubscription: Caused by an increase in the applied load either because existing flows send more traffic, or (more likely) because new flows have arrived.
  - We've been developing QCN (for Quantized Congestion Notification), an algorithm which is being studied as a part of the IEEE 802.1 Data Center Bridging group for deployment in Ethernet

### **Switched Ethernet vs Internet**

- Some significant differences ...
  - 1. There is no end-to-end signaling in the Ethernet *a la* per-packet acks in the Internet
    - So congestion must be signaled to the source by switches
    - Not possible to know round trip time!
    - Algorithm not automatically self-clocked (like TCP)
  - 2. Links can be paused; i.e. packets may not be dropped
  - 3. No sequence numbering of L2 packets
  - Sources do not start transmission gently (like TCP slow-start); they can
    potentially come on at the full line rate of 10Gbps
  - Ethernet switch buffers are much smaller than router buffers (100s of KBs vs 100s of MBs)
  - 6. Most importantly, algorithm should be simple enough to be implemented completely in hardware
- An interesting environment to develop a congestion control algorithm
  - QCN derived from the earlier BCN algorithm
  - Closest Internet relatives: BIC TCP at source, REM/PI controller at switch