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Abstract: TCP has been used very successfully for reliable 
communication for various data flows. One of the issues 
facing networks that support these data flows is 
Congestion. Current TCP Congestion Control mechanisms 
such as Reno and Tahoe focus on congestion avoidance 
based on network feedback. This is too conservative for 
short flows which require less than one round-trip time to 
communicate, and results in underutilization of available 
network bandwidth due to the TCP slow start problem. 
This paper proposes a technique to improve TCP’s 
Congestion Control algorithms’ ability to overcome the 
slow-start problem for short flows of data while retaining 
TCP Congestion Control semantics for longer flows. This 
proposed algorithm is analyzed theoretically and yields 
significantly lower latency for short flows which 
approaches that with no Congestion Control overhead. 
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1. Introduction 
Modern day Internet traffic features a variety of data 

transfers including World-Wide Web (HTTP), File Transfer 
(FTP), and Remote Login (Telnet) among others. Studies 
dating back to Jacobson’88 [1] have concluded that the ever 
increasing Internet traffic inevitably causes congestion at 
routers, and this results in poor throughput performance of 
TCP, due to bandwidth wasted in packet retransmissions. In 
response, several schemes of TCP Congestion Control have 
been proposed, as summarized in Lai’01 [18] and in Fig 1. 

Although the recent proliferation of file sharing 
services like Kazaa have gained momentum on the Internet, 
general data flows are dominated by HTTP traffic by sheer 

volume and the immense user base. The reliability of TCP 
upon which HTTP traffic is sent is well worth the drop in 
performance when compared with UDP. The average size of 
the typical HTTP packet including the TCP/IP header is 
approximately 1 KB. This is further bolstered by Lucas’97 
[8]  and Thompson’97 [9]  who show frequency distribution 
of packet sizes, depicting peaks around 50 B, 500 B, and 
1,500 B. 

Current TCP Congestion Control algorithms include 
Old Tahoe (RFC793), Tahoe (RFC1122), Reno (RFC2001 
[7] ), SDDR (Wang’98 [11] , Wang’00 [17] ), SACK 
(RFC2018), FACK, Rate Halving, General Reno 
(RFC2581), New Reno (RFC2582), Vegas (Brakmo’95 [4] 
), and Pseudo-Rate (Chen’99 [12] ). There have been some 
proposals of modified TCP Congestion Control algorithms 
to cater for short flows, as explained in Chang’93 [3] , 
Kamik’00 [14] , Pradhan’00 [16] , and Xu’02 [21] . 

Despite the positive aspects of these schemes, they are 
all based on network feedback to grow or shrink their TCP 
congestion control windows. They all start conservatively, 
and take at least one roundtrip time to grow their window 
sizes. This is referred to as the TCP slow start problem 
where available network bandwidth is underutilized as 
nodes gingerly ramp up their transmission speeds for fear of 
flooding the network. Ironically by the time a host uses 
these existing techniques to ramp up to optimal transmission 
speed, the entire data transfer could have completed if they 
did not use TCP congestion control at all. 

In the following, we expose the shortcomings of 
existing TCP Congestion Control algorithms for TCP Short 
Flows, recommend a creative technique to cater for TCP 
Short Flows, analyze this algorithm theoretically, and draw 
relevant conclusions. 

2. Shortcomings 
Current TCP Congestion Control schemes work well 

for congestion avoidance, however they tend to underutilize 
the immense bandwidth that modern day networks typically 
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have. To understand this better, we start off by defining 
Short Flows, then we explain why current TCP Congestion 
Control schemes fail to accommodate Short Flows. 

2.1 Short Flows Defined 
Short Flows are TCP flows which would last less than 

one round-trip time (RTT) without the overhead of TCP 
congestion control. With feedback based TCP congestion 
control techniques, the slow start period lasts a few RTTs 
and therefore results in tremendous underutilization of 
available (and continuously improving) network bandwidth. 

Of all the data flows on the Internet, a large portion of 
these are comprised of data transfers of size approximately 1 
KB, as explained earlier. A good example of these are web 
servers which service requests from various clients, and 
each connection lasts for the duration of one HTML web-
page transfer. The HTTP protocol stipulates one TCP 
connection for each object (text section or inline image). 
Another good example is a security certificate authority 
which issues short-term certificates to various clients. With 
the average certificate being 128 bits (= 16 B) in size, the 
typical certificate data transfer is of the order of 0.5 KB. Yet 
another example of short flows is a Temporary Mobile 
Subscriber Identity (TMSI) authority in a GSM cellular 
system, which allocates 4 Byte TMSIs to various cellular 
phone subscriber units. The size of these data transfers is of 
the order of 0.25 KB including headers. These examples are 
summarized in Fig 2. 

 
Flow Type Flow Size 
Web-page 1 KB 
Certificate 0.5 KB 

TMSI 0.25 KB 

Fig 2. Typical Internet Flow Sizes 
 
A study of the trends of Flow Sizes, Network 

Bandwidth, Round-Trip Times (RTTs), and Number of 
Flows per RTT elucidates the problem at hand. The Flow 
Sizes in Fig 2 are likely to remain approximately the same 
over time. Network Bandwidth between adjacent nodes over 
time is always increasing. Even though this is the case, 
long-distance RTTs are not likely to decrease very rapidly, 
since this is primarily determined by the number of hops 
along the route. As a result, the Number of Flows that could 
be sent per RTT over the Internet is always increasing over 
time. These trends are illustrated in Fig 3. 

 

Fig 3. Trends of Bandwidth, Flow Size, and RTT over 
Time 

 
Formally, we define Short Data Flows as those with a 

Flow Size that satisfies the following property (1). 
 

 1
. ≥=Φ

ϕ
τβ

 (1) 

 Where: Φ = Num Flows per RTT 
ϕ = Flow Size 
β = Link Bandwidth 
τ = RTT 

2.2 Canonical Example 
The limitations of current TCP Congestion Control 

schemes are best studied by establishing a canonical 
example of how a typical scenario is poorly handled by 
existing congestion control algorithms. 

 
Fig 4. Canonical Data Transfer Example 
 
Fig 4 illustrates a typical network setup. We consider 

the case where host A1 wants to send an HTML page over 
HTTP to host B2. Along the path from host A1 to B2, are 
routers RA and RB, as well as any other hops over the wide 
area Internet. For illustrative purposes, let’s consider the 
HTML page in question to contain the following data: 

• Text Frame 1 (500 bytes) 
• Inline Graphic 1 (300 bytes) 
• Inline Graphic 2 (200 bytes) 
• Text Frame 2 (100 bytes) 

The HTML page containing the above data involves 
four TCP flows, one for each transfer. We use the following 
values to evaluate this transfer: 

• 200 byte TCP packets 
• 100 Kbps Link Bandwidth 
• 0.25 second RTT 

With the above values, the transfer times for the above 
with TCP Reno Congestion Control and with no congestion 
control at all are tabulated in Fig 5. 

 
Flow TCP-Reno None 

Text 1 (500 B) 0.5 sec (2 RTT) 0.05 sec 

Text 2 (300 B) 0.5 sec (2 RTT) 0.03 sec 

Graphic 1 (200 B) 0.25 sec (1 RTT) 0.02 sec 

Graphic 2 (100 B) 0.25 sec (1 RTT) 0.01 sec 

Fig 5. Comparing Transfer Times 
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These results from Fig 5 are graphed in Fig 6. 

 
Fig 6. Shortcomings of Congestion Control for Short Flows 
 
Therefore the problem at hand is evident – the order of 

magnitude difference between the transfer times of short 
flows using traditional TCP Congestion schemes, and 
without any TCP Congestion Control overhead. The 
difference in performance between feedback-based TCP 
Congestion Control algorithms and using no congestion 
control at all is evident from Fig 6. The main problem with 
using no congestion control however is that when the 
network is congested, there is no corrective action taken, 
and packet loss is rampant in the system. 

Our proposed scheme optimizes for short flows, as well 
as provides a congestion control mechanism for when the 
network is genuinely congested. 

3. Proposed Scheme 
The proposed scheme improves on the Aggregate TCP 

(ATCP) mechanism proposed in Pradhan’00 [16] . The 
main idea is to start TCP flows optimistically for an initial 
amount of time Topt (in milliseconds), and then resort back to 
traditional TCP Congestion Control mechanisms if the flow 
continues beyond Topt time. We first consider the criteria 
that the new proposal must satisfy, and then explain the 
mechanism in context of the entire system, followed by the 
details of the handshaking between the clients and the 
Router, and also explain how the Router shares TCP state 
across connections it subtends. 

3.1 Criteria 
When considering a new proposal for a TCP 

Congestion Control mechanism, the following criteria must 
be satisfied by the new proposal: 
• Fairness: The new proposal must not be so aggressive 

that it causes other clients running traditional forms of 
TCP Congestion Control to be forced to reduce their 
window sizes below their fair share of the flow. 

• Performance: For the affected flows, the new proposal 
must provide performance no worse than traditional 
TCP Congestion Control schemes. 

• Interoperability: The new proposal must be transparent 

to client applications so it can be deployed with ease in 
a progressive fashion. 

3.2 Intuition Behind the Design 
After considering the shortcomings of traditional TCP 

Congestion Control mechanisms, and understanding the 
criteria important for any proposed scheme, it is in order to 
explain the intuition and rationale behind the proposed 
scheme. 

As illustrated in Fig 6, there exists an order-of-
magnitude difference in the transfer times of short flows 
when traditional TCP Congestion Control is used, and when 
no TCP Congestion Control is used at all. That is to say that 
for short flows, we are better of not using any TCP 
Congestion Control at all. When it comes to long flows 
however, namely the ones that multiple RTTs to transfer, 
not using any form of TCP Congestion Control introduces 
the risk of flooding the network with this flow, and starving 
other well-behaved flows of their fair share of network 
bandwidth. 

If we had ideal knowledge of the entire system, we 
would first determine if a flow were a short flow or not, and 
then use NO TCP Congestion Control algorithms for short 
flows, and use regular TCP Congestion Control algorithms 
for the longer flows. In the real world however we do not 
have perfect knowledge of whether a flow is a short flow or 
not. Internet data flows follow a Heavy Tailed Distribution 
meaning that: 
• the majority of flows in the Internet are short flows as 

explained at the outset, whereas  
• the majority of the data that is communicated over the 

Internet is through long flows. 
 
Since the majority of flows over the Internet are short 

flows, best option under practical considerations is to start 
off optimistically, in the expectation that every flow is a 
short flow, and start off using no TCP Congestion Control 
overhead. If a flow turns out to be a long flow, then the 
system must resume regular TCP Congestion Control 
semantics to avoid congestion in the network. 

This is the fundamental idea behind this design: Start 
off optimistically and not use TCP Congestion Control for 
the initial part of a flow. If a flow is prolonged, it is 
considered to be a longer flow, and regular TCP Congestion 
Control semantics are restored. 

3.3 System Overview 
The optimized TCP Congestion Control scheme is 

designed to reside in a router within the network that all 
clients use to access external hosts. This could be a 
corporate firewall, Internet Service Provider’s (ISP) 
gateway, or even a small scale WAN router. This is 
illustrated in Fig 7. 
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Fig 7. System Overview of Optimized Scheme 
 
This router intercepts all TCP packets bound from the 

local LAN interface to the external interfaces. The router 
carries out the necessary handshaking so the clients are 
completely unaware that the optimized congestion control 
scheme is in place. 

3.4 Handshaking 
When a client initiates a TCP flow, the router starts 

sending Phantom TCP Acknowledgements back to the local 
client so the client quickly increases its TCP window size 
without waiting for multiple RTTs. After the Topt time 
passes if this flow is still open, the Router stops sending 
Phantom Acks back to the local client, and lets the standard 
TCP Congestion Control mechanisms control the window 
size using the timing of the real Acks. 

The Router keeps track of the following information on 
a per-flow basis: 

• Topt timer 
• Flow Start time 
• Outbound Queue 
• Inbound Queue 
• Real Ack Received Flag 
With this optimized scheme, there is a concern that the 

initial optimistic approach of sending packets without 
waiting for real Acks could cause congestion in the network 
due to clients sending too aggressively. Therefore if the 
Router detects that an Outbound Queue overflow is 
imminent, it deliberately drops packets sent out by the client 
so the client does not speed up too fast. 

Once the Router starts receiving real Acks from a 
remote host destined for a local client, it checks the 
transaction id. If this transaction id has already been 
Phantom Ack’d back to the local client, the Router discards 
this inbound real Ack. If the transaction id has not yet been 
Phantom Ack’d back to the local client, the Router forwards 
this inbound real Ack to the local client. 

If the router starts receiving real acknowledgements 
before a flow’s Topt timer expires, it immediately stops 
sending Phantom Acks to the local client. It then checks 

every real Ack’s transaction id, and as outlined above 
selectively forwards these back to the local client. 

3.5 Autocorrection of the Topt Timer 
The Topt timer is initialized to 500 milliseconds. 

Depending on the network characteristics however, this 
value should adapt to optimize performance. This value is 
autococorrected by the Router using a long-term running 
average (LTRA) mechanism. The length of the LTRA is 
Lopt, which is set to 10,000. The following describes how 
this value is updated. 

Whenever a local client closes a TCP connection 
through the Router, the Router determines if it was a Short 
Flow or not. This is determined by checking if the flow 
received a real Ack before the local client closed the 
connection. If the flow was closed by the local client before 
receiving a real Ack, then it is considered a Short Flow, and 
its duration is factored into the LTRA Topt calculation using 
Equation (2): 
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where: Topt(j) = jth sample of Topt 
 
After the above calculation is performed and Topt is 

updated, Topt(1) is purged, and the Topt(j) are shifed as 
follows: 

)()1( jj TT optopt
←−     for j = 2 .. Lopt (3) 
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This ensures that Topt is sensitive to changes in network 

dynamics. 

3.6 Shared TCP State 
The optimization is extended to another level by 

sharing TCP state across connections subtended by the 
Router, as explained below. 

When the router terminates a TCP connection with a 
remote host, it records the optimal bandwidth achieved 
between its local subnet and the remote subnet. When a new 
connection is requested of the router with this same remote 
subnet, it already knows the optimal bandwidth, and can 
pace its Phantom Acks responsibly without becoming too 
aggressive. This further ensures fairness in the network. 

3.7 Router Complexity 
Considering all the above functionality in the router, its 

design must carefully take into account the various forms of 
book-keeping it performs. 

In particular, the router must keep track of the 
following on a per-flow basis: 
• Input and Output queues 
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• Source and Destination addresses 
• Connection Start Time 
• Real Ack Received Flag 

 
In addition, the router must keep track of the following 

information on a global (for all flows) basis: 
• Topt Values 1 .. Lopt 
• Optimal bandwidth for each destination subnet, in terms 

of frequency of Phantom Acks per second. 
 
Although this arguably makes the router design more 

complicated, it simplifies the task of deployment, since 
existing TCP clients can be accommodated with this 
scheme. Alternate schemes that involve modification to the 
TCP clients are viable in the long term, but are not 
considered herein due to the obstacles in deployment they 
will face. Even then, they will only cater for modified 
clients with the new protocol, and not older legacy clients. 

3.8 Multiple Paths to Destination 
One possible scenario that deserves special treatment 

under this design approach is the situation where a local 
client has multiple paths to the destination, not necessarily 
involving this router. In this case, the system would not be 
able to take advantage of this proposed scheme. The more 
these routers are proliferated however, the smaller the 
chance that this local host will find a route to its destination 
bypassing all such routers along its path. 

This is not a cause for concern, since this problem is 
one of initial penetration of the system in the Internet. While 
the system is still being deployed and not very prevalent in 
the Internet, many short flows would not be able to take 
advantage of these optimizations. This is the same problem 
that a client-based solution would face, so this problem of 
penetration is expected. 

4. Evaluation 
Based on the initial evaluation criteria laid out at the 

outset (Fairness, Performance, and Interoperability), the 
proposed scheme fares very well. 

Fairness is ensured by the proposed scheme by two 
factors. Firstly if the local router detects that queue overflow 
for a particular local TCP connection is imminent, it 
deliberately drops packets, causing retransmissions and 
decrease of the window size. Secondly the router shares 
TCP state across different connections, so when multiple 
local hosts connect to a particular destination subnet (such 
as a popular website), the router immediately attains the 
optimal communication bandwidth rather than completely 
bypass TCP slow start and irresponsibly flood the network 
causing congestion. 

Performance is improved since under the proposed 
scheme, the local hosts rapidly send the first few packets for 
Topt milliseconds without delay, and then resume regular 
TCP Congestion Control semantics. Therefore throughput 
for short flows is increased. For longer flows, after the Topt 
timer expires, traditional TCP Congestion Control resumes, 
so in this case the performance is no worse. 

Interoperability is facilitated since the proposed 
solution relies only on modifications at the gateway access 
routers in a network, and not the clients themselves. 
Additionally, the proposed scheme works perfectly well 
even if only one network has this scheme, while the remote 
network it is communicating with does not possess this 
scheme. 

5. Simulation 
In order for the proposed scheme to work correctly, the 

choice of the Topt timer is very important. If this timer were 
too long, then this would cause unfairness in the network. 
This is because the local host would continue to transmit 
beyond one round-trip time, and unnecessarily starve other 
nodes of their fair share of bandwidth. If the timer were too 
short, then short flows would not fully take advantage of 
available network bandwidth. 

In order to choose the Topt timer wisely, we analyze 
simulation results of queue sizes with network traffic 
characterized by varying Topt timer values. 
 

 
Fig 8. Simulation Results to select Topt 
 
As can be seen from Fig 8, for different values of  

ρ = λ / µ, 
 where  λ = arrival rate 
  µ = service rate 
the choice of 500 milliseconds is an appropriate choice, 
since before that queue occupancy does not grow 
significantly. After that value, the queue occupancy rises 
sharply. 

6. Conclusions 
The design of the proposed scheme has advantages as 

well as disadvantages. 
The fact that the design involves no changes to existing 

TCP clients means that deployment is easy, especially in 
comparison with schemes that propose changes to the entire 
TCP layer. While these alternative schemes may arguably 
provide a more complete solution, the hurdles they face in 
deployment will result in those proposals being shelved just 
like the scores of other TCP congestion control proposals. 

One disadvantage of this proposal is that it is not very 
universal. With the emphasis on the router, this scheme will 
only work when a local area network of computer nodes is 
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communicating with the outside world through a well-
defined network interface router. In many cases we just 
have individual nodes connected to the wide area network, 
and then this scheme is not directly applicable. Additionally 
if the gateway node were to experience an outage, all local 
hosts would be rendered incapable of taking advantage of 
this proposal. 

Yet another disadvantage of this proposal is that it 
relies on a highly sophisticated router design. Although 
deployment is facilitated by having zero changes to the 
clients, the tremendous cost and complexity in designing the 
router software could prove to be prohibitive. 

Future research in this line should explore the 
possibility of eliminating the Topt timer altogether, and 
consider sending Phantom Acks to the local client 
indefinitely until real Acks are received by the remote host. 
This could result in additional network congestion, but if 
properly implemented, it could simplify the Topt book-
keeping. Additionally, a client-based approach of using this 
Topt timer functionality can be studied. Although this will be 
harder to initially deploy, TCP clients will ultimately 
change, and for this reason it is viable to study such a long-
term solution. 
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