
TCP Optimized for Short Flows 1 Nitin Kartik
June 2003 Stanford University

Abstract: TCP has been used very successfully for reliable
communication for various data flows. One of the issues
facing networks that support these data flows is
Congestion. Current TCP Congestion Control mechanisms
such as Reno and Tahoe focus on congestion avoidance
based on network feedback. This is too conservative for
short flows which require less than one round-trip time to
communicate, and results in underutilization of available
network bandwidth due to the TCP slow start problem.
This paper proposes a technique to improve TCP’s
Congestion Control algorithms’ ability to overcome the
slow-start problem for short flows of data while retaining
TCP Congestion Control semantics for longer flows. This
proposed algorithm is analyzed theoretically and yields
significantly lower latency for short flows which
approaches that with no Congestion Control overhead.

Table of Contents

1. Introduction..1
2. Shortcomings..1

2.1 Short Flows Defined..2
2.2 Canonical Example..2

3. Proposed Scheme..3
3.1 Criteria...3
3.2 Intuition Behind the Design...............................3
3.3 System Overview ..3
3.4 Handshaking..4
3.5 Autocorrection of the Topt Timer4
3.6 Shared TCP State...4
3.7 Router Complexity ..4
3.8 Multiple Paths to Destination5

4. Evaluation..5
5. Simulation..5
6. Conclusions..5
7. References...6

1. Introduction
Modern day Internet traffic features a variety of data

transfers including World-Wide Web (HTTP), File Transfer
(FTP), and Remote Login (Telnet) among others. Studies
dating back to Jacobson’88 [1] have concluded that the ever
increasing Internet traffic inevitably causes congestion at
routers, and this results in poor throughput performance of
TCP, due to bandwidth wasted in packet retransmissions. In
response, several schemes of TCP Congestion Control have
been proposed, as summarized in Lai’01 [18] and in Fig 1.

Although the recent proliferation of file sharing
services like Kazaa have gained momentum on the Internet,
general data flows are dominated by HTTP traffic by sheer

volume and the immense user base. The reliability of TCP
upon which HTTP traffic is sent is well worth the drop in
performance when compared with UDP. The average size of
the typical HTTP packet including the TCP/IP header is
approximately 1 KB. This is further bolstered by Lucas’97
[8] and Thompson’97 [9] who show frequency distribution
of packet sizes, depicting peaks around 50 B, 500 B, and
1,500 B.

Current TCP Congestion Control algorithms include
Old Tahoe (RFC793), Tahoe (RFC1122), Reno (RFC2001
[7]), SDDR (Wang’98 [11] , Wang’00 [17]), SACK
(RFC2018), FACK, Rate Halving, General Reno
(RFC2581), New Reno (RFC2582), Vegas (Brakmo’95 [4]
), and Pseudo-Rate (Chen’99 [12]). There have been some
proposals of modified TCP Congestion Control algorithms
to cater for short flows, as explained in Chang’93 [3] ,
Kamik’00 [14] , Pradhan’00 [16] , and Xu’02 [21] .

Despite the positive aspects of these schemes, they are
all based on network feedback to grow or shrink their TCP
congestion control windows. They all start conservatively,
and take at least one roundtrip time to grow their window
sizes. This is referred to as the TCP slow start problem
where available network bandwidth is underutilized as
nodes gingerly ramp up their transmission speeds for fear of
flooding the network. Ironically by the time a host uses
these existing techniques to ramp up to optimal transmission
speed, the entire data transfer could have completed if they
did not use TCP congestion control at all.

In the following, we expose the shortcomings of
existing TCP Congestion Control algorithms for TCP Short
Flows, recommend a creative technique to cater for TCP
Short Flows, analyze this algorithm theoretically, and draw
relevant conclusions.

2. Shortcomings
Current TCP Congestion Control schemes work well

for congestion avoidance, however they tend to underutilize
the immense bandwidth that modern day networks typically

��������	�
���
���������������
Nitin Kartik, Department of Electrical Engineering, Stanford University

Old
Tahoe

Tahoe Reno

SDDR

SACK FACK Rate Half

General
Reno

New
Reno

Vegas Pseudo
Rate

Fig 1. TCP Congestion Control Schemes, Lai’01 [18]

TCP Optimized for Short Flows 2 Nitin Kartik
June 2003 Stanford University

have. To understand this better, we start off by defining
Short Flows, then we explain why current TCP Congestion
Control schemes fail to accommodate Short Flows.

2.1 Short Flows Defined
Short Flows are TCP flows which would last less than

one round-trip time (RTT) without the overhead of TCP
congestion control. With feedback based TCP congestion
control techniques, the slow start period lasts a few RTTs
and therefore results in tremendous underutilization of
available (and continuously improving) network bandwidth.

Of all the data flows on the Internet, a large portion of
these are comprised of data transfers of size approximately 1
KB, as explained earlier. A good example of these are web
servers which service requests from various clients, and
each connection lasts for the duration of one HTML web-
page transfer. The HTTP protocol stipulates one TCP
connection for each object (text section or inline image).
Another good example is a security certificate authority
which issues short-term certificates to various clients. With
the average certificate being 128 bits (= 16 B) in size, the
typical certificate data transfer is of the order of 0.5 KB. Yet
another example of short flows is a Temporary Mobile
Subscriber Identity (TMSI) authority in a GSM cellular
system, which allocates 4 Byte TMSIs to various cellular
phone subscriber units. The size of these data transfers is of
the order of 0.25 KB including headers. These examples are
summarized in Fig 2.

Flow Type Flow Size
Web-page 1 KB
Certificate 0.5 KB

TMSI 0.25 KB

Fig 2. Typical Internet Flow Sizes

A study of the trends of Flow Sizes, Network

Bandwidth, Round-Trip Times (RTTs), and Number of
Flows per RTT elucidates the problem at hand. The Flow
Sizes in Fig 2 are likely to remain approximately the same
over time. Network Bandwidth between adjacent nodes over
time is always increasing. Even though this is the case,
long-distance RTTs are not likely to decrease very rapidly,
since this is primarily determined by the number of hops
along the route. As a result, the Number of Flows that could
be sent per RTT over the Internet is always increasing over
time. These trends are illustrated in Fig 3.

Fig 3. Trends of Bandwidth, Flow Size, and RTT over
Time

Formally, we define Short Data Flows as those with a

Flow Size that satisfies the following property (1).

 1
. ≥=Φ

ϕ
τβ

 (1)

 Where: Φ = Num Flows per RTT
ϕ = Flow Size
β = Link Bandwidth
τ = RTT

2.2 Canonical Example
The limitations of current TCP Congestion Control

schemes are best studied by establishing a canonical
example of how a typical scenario is poorly handled by
existing congestion control algorithms.

Fig 4. Canonical Data Transfer Example

Fig 4 illustrates a typical network setup. We consider

the case where host A1 wants to send an HTML page over
HTTP to host B2. Along the path from host A1 to B2, are
routers RA and RB, as well as any other hops over the wide
area Internet. For illustrative purposes, let’s consider the
HTML page in question to contain the following data:

• Text Frame 1 (500 bytes)
• Inline Graphic 1 (300 bytes)
• Inline Graphic 2 (200 bytes)
• Text Frame 2 (100 bytes)

The HTML page containing the above data involves
four TCP flows, one for each transfer. We use the following
values to evaluate this transfer:

• 200 byte TCP packets
• 100 Kbps Link Bandwidth
• 0.25 second RTT

With the above values, the transfer times for the above
with TCP Reno Congestion Control and with no congestion
control at all are tabulated in Fig 5.

Flow TCP-Reno None

Text 1 (500 B) 0.5 sec (2 RTT) 0.05 sec

Text 2 (300 B) 0.5 sec (2 RTT) 0.03 sec

Graphic 1 (200 B) 0.25 sec (1 RTT) 0.02 sec

Graphic 2 (100 B) 0.25 sec (1 RTT) 0.01 sec

Fig 5. Comparing Transfer Times

Time

Bandwidth

Flow Size

Round Trip Time

Number of
Flows per

RTT

A1

A2

A3

RA RB

B1

B2

B3

Internet

TCP Optimized for Short Flows 3 Nitin Kartik
June 2003 Stanford University

These results from Fig 5 are graphed in Fig 6.

Fig 6. Shortcomings of Congestion Control for Short Flows

Therefore the problem at hand is evident – the order of

magnitude difference between the transfer times of short
flows using traditional TCP Congestion schemes, and
without any TCP Congestion Control overhead. The
difference in performance between feedback-based TCP
Congestion Control algorithms and using no congestion
control at all is evident from Fig 6. The main problem with
using no congestion control however is that when the
network is congested, there is no corrective action taken,
and packet loss is rampant in the system.

Our proposed scheme optimizes for short flows, as well
as provides a congestion control mechanism for when the
network is genuinely congested.

3. Proposed Scheme
The proposed scheme improves on the Aggregate TCP

(ATCP) mechanism proposed in Pradhan’00 [16] . The
main idea is to start TCP flows optimistically for an initial
amount of time Topt (in milliseconds), and then resort back to
traditional TCP Congestion Control mechanisms if the flow
continues beyond Topt time. We first consider the criteria
that the new proposal must satisfy, and then explain the
mechanism in context of the entire system, followed by the
details of the handshaking between the clients and the
Router, and also explain how the Router shares TCP state
across connections it subtends.

3.1 Criteria
When considering a new proposal for a TCP

Congestion Control mechanism, the following criteria must
be satisfied by the new proposal:
• Fairness: The new proposal must not be so aggressive

that it causes other clients running traditional forms of
TCP Congestion Control to be forced to reduce their
window sizes below their fair share of the flow.

• Performance: For the affected flows, the new proposal
must provide performance no worse than traditional
TCP Congestion Control schemes.

• Interoperability: The new proposal must be transparent

to client applications so it can be deployed with ease in
a progressive fashion.

3.2 Intuition Behind the Design
After considering the shortcomings of traditional TCP

Congestion Control mechanisms, and understanding the
criteria important for any proposed scheme, it is in order to
explain the intuition and rationale behind the proposed
scheme.

As illustrated in Fig 6, there exists an order-of-
magnitude difference in the transfer times of short flows
when traditional TCP Congestion Control is used, and when
no TCP Congestion Control is used at all. That is to say that
for short flows, we are better of not using any TCP
Congestion Control at all. When it comes to long flows
however, namely the ones that multiple RTTs to transfer,
not using any form of TCP Congestion Control introduces
the risk of flooding the network with this flow, and starving
other well-behaved flows of their fair share of network
bandwidth.

If we had ideal knowledge of the entire system, we
would first determine if a flow were a short flow or not, and
then use NO TCP Congestion Control algorithms for short
flows, and use regular TCP Congestion Control algorithms
for the longer flows. In the real world however we do not
have perfect knowledge of whether a flow is a short flow or
not. Internet data flows follow a Heavy Tailed Distribution
meaning that:
• the majority of flows in the Internet are short flows as

explained at the outset, whereas
• the majority of the data that is communicated over the

Internet is through long flows.

Since the majority of flows over the Internet are short

flows, best option under practical considerations is to start
off optimistically, in the expectation that every flow is a
short flow, and start off using no TCP Congestion Control
overhead. If a flow turns out to be a long flow, then the
system must resume regular TCP Congestion Control
semantics to avoid congestion in the network.

This is the fundamental idea behind this design: Start
off optimistically and not use TCP Congestion Control for
the initial part of a flow. If a flow is prolonged, it is
considered to be a longer flow, and regular TCP Congestion
Control semantics are restored.

3.3 System Overview
The optimized TCP Congestion Control scheme is

designed to reside in a router within the network that all
clients use to access external hosts. This could be a
corporate firewall, Internet Service Provider’s (ISP)
gateway, or even a small scale WAN router. This is
illustrated in Fig 7.

Flow Size (Bytes)

Transfer
Time (sec)

0.1

0.2

0.3

0.4

0.5

100 200 300 400 500

TCP-Reno
Congestion Control

No Congestion Control

TCP Optimized for Short Flows 4 Nitin Kartik
June 2003 Stanford University

Fig 7. System Overview of Optimized Scheme

This router intercepts all TCP packets bound from the

local LAN interface to the external interfaces. The router
carries out the necessary handshaking so the clients are
completely unaware that the optimized congestion control
scheme is in place.

3.4 Handshaking
When a client initiates a TCP flow, the router starts

sending Phantom TCP Acknowledgements back to the local
client so the client quickly increases its TCP window size
without waiting for multiple RTTs. After the Topt time
passes if this flow is still open, the Router stops sending
Phantom Acks back to the local client, and lets the standard
TCP Congestion Control mechanisms control the window
size using the timing of the real Acks.

The Router keeps track of the following information on
a per-flow basis:

• Topt timer
• Flow Start time
• Outbound Queue
• Inbound Queue
• Real Ack Received Flag
With this optimized scheme, there is a concern that the

initial optimistic approach of sending packets without
waiting for real Acks could cause congestion in the network
due to clients sending too aggressively. Therefore if the
Router detects that an Outbound Queue overflow is
imminent, it deliberately drops packets sent out by the client
so the client does not speed up too fast.

Once the Router starts receiving real Acks from a
remote host destined for a local client, it checks the
transaction id. If this transaction id has already been
Phantom Ack’d back to the local client, the Router discards
this inbound real Ack. If the transaction id has not yet been
Phantom Ack’d back to the local client, the Router forwards
this inbound real Ack to the local client.

If the router starts receiving real acknowledgements
before a flow’s Topt timer expires, it immediately stops
sending Phantom Acks to the local client. It then checks

every real Ack’s transaction id, and as outlined above
selectively forwards these back to the local client.

3.5 Autocorrection of the Topt Timer
The Topt timer is initialized to 500 milliseconds.

Depending on the network characteristics however, this
value should adapt to optimize performance. This value is
autococorrected by the Router using a long-term running
average (LTRA) mechanism. The length of the LTRA is
Lopt, which is set to 10,000. The following describes how
this value is updated.

Whenever a local client closes a TCP connection
through the Router, the Router determines if it was a Short
Flow or not. This is determined by checking if the flow
received a real Ack before the local client closed the
connection. If the flow was closed by the local client before
receiving a real Ack, then it is considered a Short Flow, and
its duration is factored into the LTRA Topt calculation using
Equation (2):

L

T
T

opt

j
opt

new

opt

L
j

opt

�
== 1

)(

 (2)

where: Topt(j) = jth sample of Topt

After the above calculation is performed and Topt is

updated, Topt(1) is purged, and the Topt(j) are shifed as
follows:

)()1(jj TT optopt
←− for j = 2 .. Lopt (3)

TLT
new

optoptopt
←)((4)

This ensures that Topt is sensitive to changes in network

dynamics.

3.6 Shared TCP State
The optimization is extended to another level by

sharing TCP state across connections subtended by the
Router, as explained below.

When the router terminates a TCP connection with a
remote host, it records the optimal bandwidth achieved
between its local subnet and the remote subnet. When a new
connection is requested of the router with this same remote
subnet, it already knows the optimal bandwidth, and can
pace its Phantom Acks responsibly without becoming too
aggressive. This further ensures fairness in the network.

3.7 Router Complexity
Considering all the above functionality in the router, its

design must carefully take into account the various forms of
book-keeping it performs.

In particular, the router must keep track of the
following on a per-flow basis:
• Input and Output queues

Client

TCP

Client

TCP

Client

TCP

Router

TCP Internet

LAN

TCP Optimized for Short Flows 5 Nitin Kartik
June 2003 Stanford University

• Source and Destination addresses
• Connection Start Time
• Real Ack Received Flag

In addition, the router must keep track of the following

information on a global (for all flows) basis:
• Topt Values 1 .. Lopt
• Optimal bandwidth for each destination subnet, in terms

of frequency of Phantom Acks per second.

Although this arguably makes the router design more

complicated, it simplifies the task of deployment, since
existing TCP clients can be accommodated with this
scheme. Alternate schemes that involve modification to the
TCP clients are viable in the long term, but are not
considered herein due to the obstacles in deployment they
will face. Even then, they will only cater for modified
clients with the new protocol, and not older legacy clients.

3.8 Multiple Paths to Destination
One possible scenario that deserves special treatment

under this design approach is the situation where a local
client has multiple paths to the destination, not necessarily
involving this router. In this case, the system would not be
able to take advantage of this proposed scheme. The more
these routers are proliferated however, the smaller the
chance that this local host will find a route to its destination
bypassing all such routers along its path.

This is not a cause for concern, since this problem is
one of initial penetration of the system in the Internet. While
the system is still being deployed and not very prevalent in
the Internet, many short flows would not be able to take
advantage of these optimizations. This is the same problem
that a client-based solution would face, so this problem of
penetration is expected.

4. Evaluation
Based on the initial evaluation criteria laid out at the

outset (Fairness, Performance, and Interoperability), the
proposed scheme fares very well.

Fairness is ensured by the proposed scheme by two
factors. Firstly if the local router detects that queue overflow
for a particular local TCP connection is imminent, it
deliberately drops packets, causing retransmissions and
decrease of the window size. Secondly the router shares
TCP state across different connections, so when multiple
local hosts connect to a particular destination subnet (such
as a popular website), the router immediately attains the
optimal communication bandwidth rather than completely
bypass TCP slow start and irresponsibly flood the network
causing congestion.

Performance is improved since under the proposed
scheme, the local hosts rapidly send the first few packets for
Topt milliseconds without delay, and then resume regular
TCP Congestion Control semantics. Therefore throughput
for short flows is increased. For longer flows, after the Topt
timer expires, traditional TCP Congestion Control resumes,
so in this case the performance is no worse.

Interoperability is facilitated since the proposed
solution relies only on modifications at the gateway access
routers in a network, and not the clients themselves.
Additionally, the proposed scheme works perfectly well
even if only one network has this scheme, while the remote
network it is communicating with does not possess this
scheme.

5. Simulation
In order for the proposed scheme to work correctly, the

choice of the Topt timer is very important. If this timer were
too long, then this would cause unfairness in the network.
This is because the local host would continue to transmit
beyond one round-trip time, and unnecessarily starve other
nodes of their fair share of bandwidth. If the timer were too
short, then short flows would not fully take advantage of
available network bandwidth.

In order to choose the Topt timer wisely, we analyze
simulation results of queue sizes with network traffic
characterized by varying Topt timer values.

Fig 8. Simulation Results to select Topt

As can be seen from Fig 8, for different values of

ρ = λ / µ,
 where λ = arrival rate
 µ = service rate
the choice of 500 milliseconds is an appropriate choice,
since before that queue occupancy does not grow
significantly. After that value, the queue occupancy rises
sharply.

6. Conclusions
The design of the proposed scheme has advantages as

well as disadvantages.
The fact that the design involves no changes to existing

TCP clients means that deployment is easy, especially in
comparison with schemes that propose changes to the entire
TCP layer. While these alternative schemes may arguably
provide a more complete solution, the hurdles they face in
deployment will result in those proposals being shelved just
like the scores of other TCP congestion control proposals.

One disadvantage of this proposal is that it is not very
universal. With the emphasis on the router, this scheme will
only work when a local area network of computer nodes is

Topt (Milliseconds)
100 100 300 400 500 600 700 800

Avg Queue Occupancy

100

200

300

400

500

ρ = 0.8

ρ = 0.7

ρ = 0.6

ρ = 0.5

TCP Optimized for Short Flows 6 Nitin Kartik
June 2003 Stanford University

communicating with the outside world through a well-
defined network interface router. In many cases we just
have individual nodes connected to the wide area network,
and then this scheme is not directly applicable. Additionally
if the gateway node were to experience an outage, all local
hosts would be rendered incapable of taking advantage of
this proposal.

Yet another disadvantage of this proposal is that it
relies on a highly sophisticated router design. Although
deployment is facilitated by having zero changes to the
clients, the tremendous cost and complexity in designing the
router software could prove to be prohibitive.

Future research in this line should explore the
possibility of eliminating the Topt timer altogether, and
consider sending Phantom Acks to the local client
indefinitely until real Acks are received by the remote host.
This could result in additional network congestion, but if
properly implemented, it could simplify the Topt book-
keeping. Additionally, a client-based approach of using this
Topt timer functionality can be studied. Although this will be
harder to initially deploy, TCP clients will ultimately
change, and for this reason it is viable to study such a long-
term solution.

7. References
[1] V. Jacobson; “Congestion Avoidance and Control”;

ACM SIGCOMM ’88 pp 273-288; 1988

[2] R. Fox; “TCP Big Window and Nak Options”; RFC
1106; 1989

[3] R. Chang, L. Huynh, J Gray; “Adaptive Rate-Based
Congestion Control Versus TCP-SS”; Proceedings
1993 International Conference on Network Protocols
pp 186-197; 1993

[4] L.S. Brakmo, L.L. Peterson; “TCP Vegas: End-to-
End Congestion Avoidance on a Global Internet”;
IEEE Journal on Selected Areas in Communications
Vol. 13 Issue 8 pp 1465 – 1480; 1995

[5] S. Floyd; “TCP and Successive Fast Retransmits”;
ftp://ftp.ee.lbl.gov/papers/fastretrans.ps; 1995

[6] V. Jacobson; “Modified TCP Congestion Avoidance
Algorithm”; mailing-list, end2end-interest; 1990

[7] W. Stevens; “TCP Slow Start, Congestion Avoidance,
Fast Retransmit, and Fast Recovery Algorithms”;
RFC 2001; 1997

[8] M.T. Lucas, D.E. Wrege, B.J. Dempsey, A.C. Weaver;
“Statistical Characterization of Wide Area IP
Traffic” ; Proceedings 6th International Conference on
Computer Communications and Networks pp 442-
447; 1997

[9] K. Thompson, G.J. Miller, R. Wilder; “Wide Area
Internet Traffic Patterns and Characteristics”; IEEE
Network Vol. 11 Issue 6 pp 10-23; 1997

[10] R. Wade, M. Kara, P.M. Dew; “Proposed
Modifications to TCP Congestion Control for High
Bandwidth and Local Area Networks”; 6th IEE
Conference on Telecommunications pp 151-155;
1998

[11] H. Wang, C. Williamson; “A New Scheme for TCP
Congestion Control: Smooth Start and Dynamic
Recovery”; Proceedings 6th International Symposium
on Modeling, Analysis, and Simulation of Computer
and Telecommunication Systems pp 69-76; 1998

[12] J.R. Chen, Y.C. Chen; “Pseudo-Rate TCP: A
Congestion Avoidance Scheme with Nearly
Optimized Fairness and Throughput”; Computer
Communications pp 1493-1501; 1999

[13] M. Allman; “TCP Congestion Control”; RFC 2581;
1999

[14] A. Kamik, A. Kumar; “Performance of TCP
Congestion Control with Explicit Rate Feedback:
Rate Adaptive TCP (RATCP)”; IEEE GLOBECOM
’00 Global Telecommunications Conference; 2000

[15] F. Peng, S. Cheng, J. Ma; “An Effective Way to
Improve TCP Performance in Wireless / Mobile
Networks”; EUROCOMM ’00, Information Systems
for Enhanced Public Safety and Security; 2000

[16] P. Pradhan, T. Chiueh, A. Neogi; “Aggregate TCP
Congestion Control Using Multiple Network
Probing”; Proceedings 20th International Conference
on Distributed Computing Systems; 2000

[17] H. Wang, H. Xin, D.S. Reeves, K.G.Shin; “A Simple
Refinement of Slow Start of TCP Congestion
Control”; Proceedings 5th IEEE Symposium on
Computers and Communications; 2000

[18] Y. Lai, C. Yao; “TCP Congestion Control Algorithms
and a Performance Comparison”; Proceedings 10th
International Conference on Computer
Communications and Networks; 2001

[19] M. Albuquerque, J.H. Kim, S. Roy; “Effect of Packet
Size on TCP-Reno Performance Over Lossy,
Congested Links”; Military Communications
Conference 2001 Vol. 1 pp 705-710; 2001

[20] F. Hu, N.K. Sharma; “The Quantitative Analysis of
TCP Congestion Control Algorithms in Third
Generation Cellular Networks Based on FSMC Loss
Model and Its Performance Enhancement”;
Proceedings IEEE INFOCOM 2002 Vol. 1 pp 407-
416; 2002

[21] W. Xu, A.G. Qureshi, K.W. Sarkies; “Novel TCP
Congestion Control Scheme and Its Performance
Evaluation”; Proceedings IEE Communications Vol.
149 Issue 4 pp 217-222; 2002

