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1. Introduction 
During recent years, a lot of work has been 
done towards the theoretical understanding of 
TCP and especially its congestion control 
algorithm. Congestion control is viewed as a 
feedback system, described by a deterministic 
flow model approximation. Its stability 
properties are examined through applying 
control theory techniques upon the appropriate 
differential equations. The purpose for this 
analysis is to develop new algorithms with 
well-known behavior against the variations of 
the network parameters, such as round-trip 
delays, capacity (long-term variations), number 
of users and requested data rate (short-term 
variations). Hence, there is a strong motivation 
for designing new congestion control 
algorithms that provide stability guarantees, 
robustness to delay and scalability to large 
capacities and arbitrary topologies. 

There are two forms of congestion control, the 
primal and the dual. The former is based on the 
users controlling their sending rates depending 
on the congestion indication feedback signals 
they get from the network resources (routers). 
The latter is implemented by the resources 
through gathering information from the flows 
that are using them. Primal algorithms are 
more popular because they get more easily 
distributed. TCP for example is basically a 
primal congestion control algorithm, although 
its current version has dynamics in both sides. 

In [1], which is considered to have initiated all 
this discussion, the following primal fluid-flow 
equation is proposed: 
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There are different ways to describe these 
equations. From an economic point of view, 
users try to adjust their own sending rate xr, so 
that they equalize the price per unit time wr 
they are willing to pay with the total price that 
the network charges for servicing that much 
rate through the links that constitute their 
route. From a feedback viewpoint, let pj denote 
the intensity of the signals that resource j sends 
as an indication of its congestion level. Then, 
equilibrium is reached when the additive 
increase term wr (in bps) becomes equal to the 
multiplicative decrease factor pj multiplied by 
xr(t). It has been proved, using an appropriate 
Lyapunov function, that this primal problem is 

globally stable. The analogous dual problem 
equations are also proposed. 

In [2], the authors introduce delays to equation 
(1). Now, the equations are: 
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where Djr is the delay from resource j to user r 
and Dsj is the delay from user s to resource j. 
The queuing delays are considered negligible 
(see [17] for a discussion about this), so only 
the propagation delays are taken into account. 
Assuming that all users have the same round-
trip time (RTT), it is proved that the system is 
locally stable when each user has gain 
inversely proportional to the common RTT. 

Papers [3] and [4] move one step forward and 
establish the conditions for having local 
stability for arbitrary round-trip delays. 
Nevertheless, it must be pointed out that all 
these proofs are based on the assumptions that 
the number of users does not change and that 
we only have one resource (link) shared by the 
users. 

This discussion concerning the stability of 
delayed feedback systems found application in 
the theoretical analysis of congestion control 
algorithms, especially TCP and AQM 
implementations. In [6] the authors propose a 
framework for the description of networks that 
support active queue management with TCP 
flows through differential equations. In  [7], 
this methodology is used in order to investigate 
the stability of RED, assuming that all users 
have the same RTT. It is proved that Tail Drop 
is unstable and that RED, although stable 
under certain conditions, imposes a tradeoff 
between fast response times and stability 
margins. Furthermore, for an overloaded 
system, the flows pay a double penalty of 
higher delay as well as higher loss. In [8], the 
authors describe guidelines for design of AQM 
systems that are both stable and efficient and 
propose two new algorithms aimed at solving 
the RED problems. 

Following these guidelines, it is proved in [9] 
that the TCP/RED becomes unstable when 
users have different RTTs, when the delays 
increase and surprisingly when the link 
capacity increases. The authors also prove the 
stability conditions for one link and several 
heterogeneous users. Finally, they state that 
TCP/AQM can be considered to be a 
distributed primal-dual algorithm: the users 
adjust their sending rates, and the links 



(resources) the loss/marking probabilities, both 
trying to maximize the aggregate source utility. 
Motivated by the fact that TCP performance 
will decline in the future because of increase in 
propagation delays and link capacities, 
reference [10] proposes a new set of 
implementation solutions and proves that the 
longer the propagation delay the slower the 
source control must be, to avoid instability.  

Coming back to the proofs of stability for the 
system proposed by F.P. Kelly in [1], Glenn 
Vinnicombe investigates in [11] the stability 
criteria for multiple links and multiple 
heterogeneous users. In doing so, he proves 
that in such a system there is always a tradeoff 
between network performance and its speed of 
response. He finally applies his previous 
derivations to TCP-like algorithms. 

Concluding this literature survey, we would 
like to present a number of open issues 
concerning congestion control stability. As 
mentioned above, all proofs (with the 
exception of the non-delayed system of [1] ) 
refer to local stability, i.e very close to the 
equilibrium point. But this tells nothing about 
the global stability of the system, which means 
that we don’t know if the network is stable, 
although there is convergence around each 
resource. Furthermore, strong assumptions and 
approximations have been used: negligible 
queuing delay, flow fluid approximation, fixed 
population of users, only one resource. As a 
result, there is a lot of discussion about the 
application of these theories to the real world. 
On the other hand, there is a new field for 
further research aimed at proving stability 
under fewer assumptions, designing new 
robust algorithms, describing new AQM 
implementations and investigating their 
parameters that lead to stable, fair and efficient 
networks. 

The remaining of this report is organized as 
follows:  chapter 2 is a brief summary of the 
eXplicit Control Protocol (XCP) proposed by 
Dina Katabi et al. in [12]. In chapter 3 we 
describe a methodology that can be used for 
the determination of the XCP parameters so 
that local stability of a system with one 
resource and N heterogeneous users is ensured. 
In chapter 4, we present the simulation results 
we got through the implementation of XCP in 
ns-2. Finally, the appendices contain the 
MATLAB simulink model we developed for 
two users, as well as the plots showing the 
instantaneous rate for each user when such a 
model is used. 

2. XCP overview 
Explicit Control Protocol (XCP) is a new 
congestion control algorithm aimed at solving 
the stability and efficiency problems that TCP 
and AQM are facing. Its main features are: 

• The feedback that users get from a router is 
descriptive of the level of congestion of the 
router and not just a binary indication. 

• There is an Efficiency controller 
(implementing a MIMD scheme) and a 
Fairness controller (implementing an AIMD 
scheme). They are decoupled, in order to 
provide stability and efficient utilization of the 
spare bandwidth. 

• Packets carry the RTT and the current 
congestion window from the user to the routers 
as well as the feedback from the routers to the 
users. These three new fields constitute the 
congestion header. 

• XCP has 2 fixed parameters (proposed 
values: a = 0.4 and b = 0.226) 

When the XCP sender receives an 
acknowledgement, its congestion window is 
adjusted by just adding the feedback (can be 
positive or negative) carried by the 
acknowledgement to each current congestion 
window. The XCP receiver just copies the 
congestion header from the data packet to its 
acknowledgment. 

In routers the algorithm works in three blocks. 
The first one gathers RTT and congestion 
window statistics through the incoming 
packets. The second one calculates the 
aggregate feedback (that must be sent to the 
users) and two constants that determine the 
way that this aggregate feedback will be 
divided in a fair way among the users. This 
block is executed once every average RTT, 
with the average RTT being updated according 
to the statistics gathered by the first block. The 
third block writes the appropriate feedback 
information to each outgoing packet. 

The simulations show that XCP is more robust 
than TCP and most AQM schemes against 
varying traffic demands and round-trip times. 
It also seems to perform better as far as high 
utilization, small queue size and fair bandwidth 
allocation are concerned. The next chapter is 
about XCP’s stability issues. 

3. XCP Stability 
In this chapter, we investigate the stability of 
the eXplicit Control Protocol (XCP). Let c be 
the capacity of a single link, N be the number 
of sources using that link (N-constant) and ri(t) 



be the sending rate of source i at time t. In 
[12], it is proved that, if all sources have the 
same round trip delay d, this system of one 
link and N users is stable, for any delay, when 
the parameters a and b satisfy the following 
conditions: 

0
4 2

a
π< <    and    2 2b a=           (3) 

We believe that the constant RTT assumption 
is very strong and we propose a methodology 
for finding the margins for a and b that lead the 
system to local stability. 

The protocol can be viewed as a delayed 
feedback system, where the router informs the 
sources about the increase/decrease in 
congestion window size needed for the link to 
carry aggregate throughput equal to its 
capacity. The sources then adjust their rate 
according to this information, which they 
obtain through the acknowledgment packets 
that they receive. In [12], equations (15) – (17) 
describe the system when the RTT is constant. 
Moving one step forward, the following 
equations present the response of each 
heterogeneous user to the incoming feedback: 
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where dri is the propagation delay from the 
router to source i, dir is the propagation delay 
from source i to the router, di is the round trip 
time of source i, d(t) is the average round trip 
time calculated by the router and q(t) is the 
size of the queue at time t. The notation 
(dy/dt)+ is equivalent to: 

•
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When the system is exactly at equilibrium, the 
average round trip delay d(t) calculated by the 
router is constant and equal to: 
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Around the equilibrium we can assume that the 
above equation still holds. Simulations in 
Matlab showed that this constitutes a very 
good approximation. We also consider the 
queuing delay to be negligible compared to the 
propagation delay, which is also a good 
approximation, as stated by F.P. Kelly in [17]. 
Hence, the round trip delay of each user is 
constant and equal to di = dri+ dir.  

Additionally, the fairness rule states that when 
the link is requested to service more traffic 
than its capacity all users get the same 
bandwidth at the equilibrium point. Thus, 
towards the complete linearization of the 
system around the equilibrium point, we can 
also assume that the coefficient of (-dy/dt)+ is 
equal to 1/N. Simulations in Matlab showed 
that this also is a reasonable assumption, as the 
system response remained practically 
unchanged (see Appendix B - Figure 10). Note 
that we do not make the same approximation 
for the next term, because then the system will 
have an eigenvalue equal to 0, which implies 
marginal and not asymptotic stability. As 
expected, Matlab simulations validated the 
above theoretical result. Taking all these into 
account, the simplified equation is: 
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Note that now the (dy/dt)+
�and (-dy/dt)+ terms 

have been unified into one term and no 
decision is needed anymore. Then, we write 
this equation for each user and make the 
following transformation: 
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where xi(t) refers to source i and xq(t) refers to 
the queue size. Taking the Laplace transform 
for each equation and writing everything in 
matrix form, we get: 
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The system is locally asymptotically stable 
when all the solutions of the equation det[A] = 
0 have real part smaller than 0. The problem 
from now on is not a control theory one, it is 
just about investigating the values for a and b 
that lead all roots to have negative real part. 
Nevertheless, such a computation is not at all 
trivial because of the exponentials. From now 
on, we describe our derivation for 2 users. 

When N=2, matrix A is equal to: 
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The corresponding characteristic function is: 

1 2 1 1 2

2 1 2 1 2 1 2

1 1 2 1 2 2

1 1 2 2 1 1 2 2

( ) ( 2 )2

( 2 ) ( 2( ))2 3 3

( ) ( )

( 2 ) ( 2 )

0.1 a (0.05 0.5 ) (

)

{0.05 0.05

0.5 0.5 }

r r r r r

r r r r r r r

r r r r r r

r r r r r r r r

d d s d d d s

d d d s d d d d s

d d d s d d d s

d d d d s d d d d s

d e s a d e

e s d e s

b e e

d e s d e s

+ + +

+ + + + +

+ + + +

+ + + + + +

⋅ ⋅ ⋅ ⋅ + + +

+ + +

+ + +
⋅ ⋅ + ⋅ ⋅

 

In order to avoid the calculations with 
exponentials, we use the well-known 1st order 
Padé approximation: 
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This generates a 9-order polynomial, whose 
coefficients are derived with the aid of 
Mathematica. The Matlab code we wrote 
investigates the solutions of the polynomial 
under different values for a, b and delays. For 
each specific value of a and b, we examine the 
roots of det[A] = 0 under different values for 
the delays d1r, dr1, d2r and dr2. If we derive a 
root with non-negative real part, this means 
that the system is unstable. In the following 
plot the red spots (highlighted region) 
correspond to a and b values that lead to 
instability for some combination of delay times 
and the white spots to a and b values which 
make the system stable for all the delay values 
we tried: 

 

Figure 1: Plot showing the stability region for 
different values of a and b 

This figure has been created with delays 
ranging from 0 to 20 sec and a 0.05 resolution 
for parameters a and b. The reason for 
choosing such values for the RTTs is that 
Padé’s performance for high delays is not very 
good. Since the increase of propagation delays 
makes the system less stable, we expect that 
the region of stability depicted in Figure 1 will 
be smaller. Nevertheless, we ran the MATLAB 
program we wrote for delays of up to 6 sec and 



found that the stability area is about the same, 
due to the fact that Padé approximation is 
“more relaxed” as delays increase. Any other 
more accurate approximation and methodology 
can be used in order to simplify the solution of 
the det[A] = 0 equation. 

Furthermore, additional stability simulations 
for the two-users case have been made using 
the Simulink model shown in Appendix A. 
The plots found in Appendix B depict the 
behavior of the system under different values 
for the parameters a and b and the delays d1 
and d2. 

The reason for following the procedure 
described above to prove the conditions for 
stability is that we wanted to investigate all the 
values of a and b which make the system 
stable. In this way, we avoided imposing 
constraints in the a and b values as Dina Katabi 
does in [12] in order to simplify the amplitude 
and angle equations of the open-loop transfer 
function. 

4. Simulations under ns-2 
Design decisions and implementation 

We implemented XCP as presented in [12] 
with the following changes: 

• Users never request negative feedback 
when it occasionally happens that router sends 
positive updates that make the sender’s 
congestion window larger than what is 
requested by the sender. This was found to 
cause instability and limit cycles especially 
when users are few. 

• Estimation of queue occupancy is done 
over the complete control interval d, not just 
during the "last propagation delay" as 
mentioned in [12]. This part of the paper is 
unclear and potentially requires keeping 
significant state in the router, which defeats the 
purpose of simplicity of the protocol. 

• Each sender maintains a low-pass filtered 
estimate of RTT. The TCP Tahoe RTT 
estimation ns-2 code was consistently found to 
estimate RTT wrongly for all configuration 
values of tcpTick attempted, and this was a 
major source of errors. 

To the best of our knowledge we built a correct 
implementation of XCP. The following figure 
for example is similar to figure 12 of [12] 
derived for the adversarial case of two users 
having different RTTs: 

 

Figure 2 

Simulation setup 

In all cases mentioned below we used the 
topology of figure 2 of [12] where the link 
connecting the XCP router and the traffic sink 
is the bottleneck link. All users are connected 
to the traffic sink through this XCP router. 

Performance observations 

Our simulations were in general in accordance 
with Dina Katabi’s claim that XCP is stable 
and achieves fairness and high efficiency when 
parameters a and b take the values 0.4 and 
0.226 respectively. Our goal was to discover 
deviations from the ideal behavior described in 
[12] by applying appropriate adversarial traffic 
(large differences in RTTs and variable with 
time number of users). 

• Fairness: 

We found that XCP is generally fair to 
different flows even if they belong to 
significantly heterogeneous flows. However, 
when flows with different RTTs are applied, 
XCP sometimes discriminates among 
heterogeneous flows. In Figure 3, the average 
rates for users 1 and 2 were 1007 kbps and 
987kbps respectively: 

 

Figure 3 

In Figure 4, the rates were 3200kbps and 
2800kbps respectively: 



 

Figure 4 

• Stability and transient behavior: 

We tested the protocol with values for 
parameters a and b within and out of the 
stability region we derived in our previous 
analysis for two flows. Simulation indeed 
showed that flows eventually converge to a 
steady state for values chosen in this region. 
We also observed that as we come closer to the 
instability region the limit cycles have greater 
width, the utilization drops and fairness is not 
achieved. As expected, if we go far enough 
inside the unstable area oscillations are huge 
and throughputs do not converge. Additionally, 
higher values for parameter a lead to faster 
response of the system to changes of inputs. 
Therefore, there is a tradeoff in choosing the 
value for a between speed of response and 
stability margins. 

The following scenario illustrates the impact of 
choosing parameter a. Seven users share an 
underutilized link. At time t = 10 an additional 
flow with small RTT starts sending packets. 
The following figures show that both faster 
response and higher utilization can be achieved 
for values of a that are greater than the 
maximum value proposed in [12]. Figure 5 is 
derived with a = 0.4 and Figure 6 with a = 0.7: 

 

Figure 5 

 

Figure 6 

Note 1: The temporary drop in utilization is 
due to the concept of “shuffled traffic” used in 
XCP. 

During the transient phase XCP exhibits 
significant oscillations in the users' sending 
rates, typical of a control system. Eventually 
these oscillations diminish and throughputs 
converge. Moreover traffic becomes 
interleaved and thus no high queue 
occupancies happen except in the transient 
phases following changes in the number of 
users (see the following figures as well as 
Figure 4):  

 

Figure 7 

 
Figure 8 

We observe that queueing delay during the 
transient period is not negligible. Queues grow 



very large initially and then converge to small 
values.  

Convergence to the steady state may last long 
even if there is available bandwidth, contrary 
to what stated in [12, par. 3.3]. In Figure 5, for 
example, the flow that enters at t = 10 needs 
10-15 sec to reach its steady state data rate. 
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APPENDIX A: SIMULINK Model for 2 sources 

 

Figure 9: The Simulink model for 2 sources 

The previous figure shows the model we developed with the aid of Simulink. Its main 
components are: 

• The rate integrator, which receives the derivatives of rates from the ‘rderiv’ component 
and outputs the instantaneous rates r1(t) and r2(t). 

• The delay components, which take the two rates r1(t) and r2(t) as inputs and output a 
delayed version of them. 

• The ‘queue’ subsystem, which calculates the queue rate ( )q t
g

and the instantaneous queue 
size q(t), taking into account that the queue size can never be negative. Then, q(t) passes 
through the appropriate delay components and enters the ‘rderiv’ component. 

• The ‘rderiv’ component, which receives the delayed version of queue size and rates, 
calculates the feedback and adjusts the rates r1(t) and r2(t) according to the XCP protocol. The 
following Matlab code has been written for the implementation of this functionality: 



%Calculates the derivatives of rates 
%   given the instantaneous queue size (delayed appropriately) 
%   and the instantaneous rates (delayed appropriately) 
function rderiv = rderiv(input) 
 
global N cap d1 d2 a b; 
 
%help variables 
r1_d1=input(9); 
r1_dr2d1r=input(3); 
 
r2_d2=input(8); 
r2_d2rdr1=input(6); 
 
%queue size 
q1 = input(1); 
q2 = input(2); 
 
%average rtt 
d = (d1+d2)/N; 
 
%feedback 
fbk1 = -a/d*(r1_d1+r2_d2rdr1-cap)-b/d^2*q1; 
fbk2 = -a/d*(r2_d2+r1_dr2d1r-cap)-b/d^2*q2; 
 
 
%if choice is 0, then the rate derivatives calculations are done 
%   under the assumption that the coefficient for [-y’(t)]+  
%   is 1/N and not {r_i/(r_1+r_2)} 
%if choice is 1, then no such assumption is made 
choice = 1; 
 
%calculation of rate derivatives (assumption is made, see above) 
if choice == 0 
 
    if fbk1>=0 
        rderiv(1) = 1/N*(fbk1 + 0.1/d*(r1_d1+r2_d2rdr1)) -... 
            (1/N)*(0+N*r1_d1*0.1/d); 
    else 
        rderiv(1) = 1/N*(0 + 0.1/d*(r1_d1+r2_d2rdr1)) -... 
            (1/N)*(-fbk1+N*r1_d1*0.1/d); 
    end 
 
    if fbk2>=0 
        rderiv(2) = 1/N*(fbk2 + 0.1/d*(r1_dr2d1r+r2_d2)) -... 
            (1/N)*(0+N*r2_d2*0.1/d); 
    else 
        rderiv(2) = 1/N*(0 + 0.1/d*(r1_dr2d1r+r2_d2)) -... 
            (1/N)*(-fbk2+N*r2_d2*0.1/d); 
    end 
     
%calculation of rate derivatives (without the assumption, see above) 
else 
 
    if fbk1>=0 
        rderiv(1) = 1/N*(fbk1 + 0.1/d*(r1_d1+r2_d2rdr1)) -... 
            r1_d1/(r1_d1+r2_d2rdr1)*(0+0.1/d*(r1_d1+r2_d2rdr1)); 
 
    else 
        rderiv(1) = 1/N*(0 + 0.1/d*(r1_d1+r2_d2rdr1)) -... 
            r1_d1/(r1_d1+r2_d2rdr1)*(-fbk1+0.1/d*(r1_d1+r2_d2rdr1)); 
    end 
 
 
    if fbk2>=0 
        rderiv(2) = 1/N*(fbk2 + 0.1/d*(r1_dr2d1r+r2_d2)) -... 
            r2_d2/(r2_d2+r1_dr2d1r)*(0+0.1/d*(r1_dr2d1r+r2_d2)); 
    else 
        rderiv(2) = 1/N*(0 + 0.1/d*(r1_dr2d1r+r2_d2)) -... 
            r2_d2/(r2_d2+r1_dr2d1r)*(-fbk2+0.1/d*(r1_dr2d1r+r2_d2)); 
    end 
end 
 
 
%send feedbacks to output 
rderiv(3) = fbk1; 
rderiv(4) = fbk2; 



Appendix B: Instantaneous rate plots 
The following plots have been derived with the aid of the ‘Scope3’ component shown in 
Figure 9. Please, refer to Appendix B for the details about the Simulink model we used. 

 
Figure 10: when we make the approximation that [dy/dy]+and [-dy/dt]+ can 

be unified, we get the same rates for users 1 and 2 as in the normal case 

 

 
Figure 11: quick convergence when delays are small 

 



 

 
Figure 12: slow convergence for larger delays 

 

 
Figure 13: ‘oscillatory’ convergence when the values for a and b determine 
a point close to the boundary between stability and instability (small delays) 

 

 

 



 

 
Figure 14: ‘oscillatory’ and slow convergence when the values for a and b 

determine a point close to the boundary between stability and 
instability(large delays) 

 

 
Figure 15: Continuous oscillations for an (a,b) point residing in the area of 

instability 

 


