
384Y Project June 5, 2002

Stability of Congestion Control Algorithms

Using Control Theory with an application to XCP

,RDQQLV�3DSDGLPLWULRX��MSJ#VWDQIRUG�HGX��

*HRUJH�0DYURPDWLV��JPDYU#VWDQIRUG�HGX��

1. Introduction
During recent years, a lot of work has been
done towards the theoretical understanding of
TCP and especially its congestion control
algorithm. Congestion control is viewed as a
feedback system, described by a deterministic
flow model approximation. Its stability
properties are examined through applying
control theory techniques upon the appropriate
differential equations. The purpose for this
analysis is to develop new algorithms with
well-known behavior against the variations of
the network parameters, such as round-trip
delays, capacity (long-term variations), number
of users and requested data rate (short-term
variations). Hence, there is a strong motivation
for designing new congestion control
algorithms that provide stability guarantees,
robustness to delay and scalability to large
capacities and arbitrary topologies.

There are two forms of congestion control, the
primal and the dual. The former is based on the
users controlling their sending rates depending
on the congestion indication feedback signals
they get from the network resources (routers).
The latter is implemented by the resources
through gathering information from the flows
that are using them. Primal algorithms are
more popular because they get more easily
distributed. TCP for example is basically a
primal congestion control algorithm, although
its current version has dynamics in both sides.

In [1], which is considered to have initiated all
this discussion, the following primal fluid-flow
equation is proposed:

•

:

•() () ()

() ()

r r r j
j r

j j s
s j s

x t w x t t

where t p x t

ε

ε

κ µ

µ

= −

=

∑

∑

 (1)

There are different ways to describe these
equations. From an economic point of view,
users try to adjust their own sending rate xr, so
that they equalize the price per unit time wr
they are willing to pay with the total price that
the network charges for servicing that much
rate through the links that constitute their
route. From a feedback viewpoint, let pj denote
the intensity of the signals that resource j sends
as an indication of its congestion level. Then,
equilibrium is reached when the additive
increase term wr (in bps) becomes equal to the
multiplicative decrease factor pj multiplied by
xr(t). It has been proved, using an appropriate
Lyapunov function, that this primal problem is

globally stable. The analogous dual problem
equations are also proposed.

In [2], the authors introduce delays to equation
(1). Now, the equations are:

•

:

•() () ()

() ()

r r r r j jr
j r

j jr j s jr sj
s j s

x t w x t D t D

t D p x t D D

ε

ε

κ µ

µ

= − − −

− = − −

∑

∑

 (2)

where Djr is the delay from resource j to user r
and Dsj is the delay from user s to resource j.
The queuing delays are considered negligible
(see [17] for a discussion about this), so only
the propagation delays are taken into account.
Assuming that all users have the same round-
trip time (RTT), it is proved that the system is
locally stable when each user has gain
inversely proportional to the common RTT.

Papers [3] and [4] move one step forward and
establish the conditions for having local
stability for arbitrary round-trip delays.
Nevertheless, it must be pointed out that all
these proofs are based on the assumptions that
the number of users does not change and that
we only have one resource (link) shared by the
users.

This discussion concerning the stability of
delayed feedback systems found application in
the theoretical analysis of congestion control
algorithms, especially TCP and AQM
implementations. In [6] the authors propose a
framework for the description of networks that
support active queue management with TCP
flows through differential equations. In [7],
this methodology is used in order to investigate
the stability of RED, assuming that all users
have the same RTT. It is proved that Tail Drop
is unstable and that RED, although stable
under certain conditions, imposes a tradeoff
between fast response times and stability
margins. Furthermore, for an overloaded
system, the flows pay a double penalty of
higher delay as well as higher loss. In [8], the
authors describe guidelines for design of AQM
systems that are both stable and efficient and
propose two new algorithms aimed at solving
the RED problems.

Following these guidelines, it is proved in [9]
that the TCP/RED becomes unstable when
users have different RTTs, when the delays
increase and surprisingly when the link
capacity increases. The authors also prove the
stability conditions for one link and several
heterogeneous users. Finally, they state that
TCP/AQM can be considered to be a
distributed primal-dual algorithm: the users
adjust their sending rates, and the links

(resources) the loss/marking probabilities, both
trying to maximize the aggregate source utility.
Motivated by the fact that TCP performance
will decline in the future because of increase in
propagation delays and link capacities,
reference [10] proposes a new set of
implementation solutions and proves that the
longer the propagation delay the slower the
source control must be, to avoid instability.

Coming back to the proofs of stability for the
system proposed by F.P. Kelly in [1], Glenn
Vinnicombe investigates in [11] the stability
criteria for multiple links and multiple
heterogeneous users. In doing so, he proves
that in such a system there is always a tradeoff
between network performance and its speed of
response. He finally applies his previous
derivations to TCP-like algorithms.

Concluding this literature survey, we would
like to present a number of open issues
concerning congestion control stability. As
mentioned above, all proofs (with the
exception of the non-delayed system of [1])
refer to local stability, i.e very close to the
equilibrium point. But this tells nothing about
the global stability of the system, which means
that we don’t know if the network is stable,
although there is convergence around each
resource. Furthermore, strong assumptions and
approximations have been used: negligible
queuing delay, flow fluid approximation, fixed
population of users, only one resource. As a
result, there is a lot of discussion about the
application of these theories to the real world.
On the other hand, there is a new field for
further research aimed at proving stability
under fewer assumptions, designing new
robust algorithms, describing new AQM
implementations and investigating their
parameters that lead to stable, fair and efficient
networks.

The remaining of this report is organized as
follows: chapter 2 is a brief summary of the
eXplicit Control Protocol (XCP) proposed by
Dina Katabi et al. in [12]. In chapter 3 we
describe a methodology that can be used for
the determination of the XCP parameters so
that local stability of a system with one
resource and N heterogeneous users is ensured.
In chapter 4, we present the simulation results
we got through the implementation of XCP in
ns-2. Finally, the appendices contain the
MATLAB simulink model we developed for
two users, as well as the plots showing the
instantaneous rate for each user when such a
model is used.

2. XCP overview
Explicit Control Protocol (XCP) is a new
congestion control algorithm aimed at solving
the stability and efficiency problems that TCP
and AQM are facing. Its main features are:

• The feedback that users get from a router is
descriptive of the level of congestion of the
router and not just a binary indication.

• There is an Efficiency controller
(implementing a MIMD scheme) and a
Fairness controller (implementing an AIMD
scheme). They are decoupled, in order to
provide stability and efficient utilization of the
spare bandwidth.

• Packets carry the RTT and the current
congestion window from the user to the routers
as well as the feedback from the routers to the
users. These three new fields constitute the
congestion header.

• XCP has 2 fixed parameters (proposed
values: a = 0.4 and b = 0.226)

When the XCP sender receives an
acknowledgement, its congestion window is
adjusted by just adding the feedback (can be
positive or negative) carried by the
acknowledgement to each current congestion
window. The XCP receiver just copies the
congestion header from the data packet to its
acknowledgment.

In routers the algorithm works in three blocks.
The first one gathers RTT and congestion
window statistics through the incoming
packets. The second one calculates the
aggregate feedback (that must be sent to the
users) and two constants that determine the
way that this aggregate feedback will be
divided in a fair way among the users. This
block is executed once every average RTT,
with the average RTT being updated according
to the statistics gathered by the first block. The
third block writes the appropriate feedback
information to each outgoing packet.

The simulations show that XCP is more robust
than TCP and most AQM schemes against
varying traffic demands and round-trip times.
It also seems to perform better as far as high
utilization, small queue size and fair bandwidth
allocation are concerned. The next chapter is
about XCP’s stability issues.

3. XCP Stability
In this chapter, we investigate the stability of
the eXplicit Control Protocol (XCP). Let c be
the capacity of a single link, N be the number
of sources using that link (N-constant) and ri(t)

be the sending rate of source i at time t. In
[12], it is proved that, if all sources have the
same round trip delay d, this system of one
link and N users is stable, for any delay, when
the parameters a and b satisfy the following
conditions:

0
4 2

a
π< < and 2 2b a= (3)

We believe that the constant RTT assumption
is very strong and we propose a methodology
for finding the margins for a and b that lead the
system to local stability.

The protocol can be viewed as a delayed
feedback system, where the router informs the
sources about the increase/decrease in
congestion window size needed for the link to
carry aggregate throughput equal to its
capacity. The sources then adjust their rate
according to this information, which they
obtain through the acknowledgment packets
that they receive. In [12], equations (15) – (17)
describe the system when the RTT is constant.
Moving one step forward, the following
equations present the response of each
heterogeneous user to the incoming feedback:

•
1

•
1

1

•
1

()
() 1

() 0.1
()

()
()

() 0.1
()()

(())
(

()
()

N

i ri sr
i s

ri

N

i ri sr
i i s

N
ri

i ri sr
s

N

i ri sr
s ri

ri

r t d d
dr t

y t
dt N d t d

r t d d
r t d

y t
d t dr t d d

where

a r t d d c
bq t d

y t
d t d

+
=

+
=

=

=

 − − = + − −

 − − − − − + − − −

− − −
−= − −

−

∑

∑

∑

∑
2

•

1

)

()

() ()

ri

N

s
s

d t d

and

q t r t c
=

−

= −∑

where dri is the propagation delay from the
router to source i, dir is the propagation delay
from source i to the router, di is the round trip
time of source i, d(t) is the average round trip
time calculated by the router and q(t) is the
size of the queue at time t. The notation
(dy/dt)+ is equivalent to:

•

max(0,)y (5)

When the system is exactly at equilibrium, the
average round trip delay d(t) calculated by the
router is constant and equal to:

1()

N

i
i

d
d t d

N
== =
∑

 (6)

Around the equilibrium we can assume that the
above equation still holds. Simulations in
Matlab showed that this constitutes a very
good approximation. We also consider the
queuing delay to be negligible compared to the
propagation delay, which is also a good
approximation, as stated by F.P. Kelly in [17].
Hence, the round trip delay of each user is
constant and equal to di = dri+ dir.

Additionally, the fairness rule states that when
the link is requested to service more traffic
than its capacity all users get the same
bandwidth at the equilibrium point. Thus,
towards the complete linearization of the
system around the equilibrium point, we can
also assume that the coefficient of (-dy/dt)+ is
equal to 1/N. Simulations in Matlab showed
that this also is a reasonable assumption, as the
system response remained practically
unchanged (see Appendix B - Figure 10). Note
that we do not make the same approximation
for the next term, because then the system will
have an eigenvalue equal to 0, which implies
marginal and not asymptotic stability. As
expected, Matlab simulations validated the
above theoretical result. Taking all these into
account, the simplified equation is:

•
1

•
1

2

•

1

()
() ()1

() 0.1 0.1

(())
()

()

() ()

N

i ri sr
i s i i

N

i ri sr
s ri

N

s
s

r t d d
dr t r t d

y t
dt N d d

where

a r t d d c
bq t d

y t
d d

and

q t r t c

=

=

=

 − − − = + −

− − −
−= − −

= −

∑

∑

∑

Note that now the (dy/dt)+
�and (-dy/dt)+ terms

have been unified into one term and no
decision is needed anymore. Then, we write
this equation for each user and make the
following transformation:

() () 1...

() ()

i i

q

c
x t r t n N

N
x t q t

= − =

=

where xi(t) refers to source i and xq(t) refers to
the queue size. Taking the Laplace transform
for each equation and writing everything in
matrix form, we get:

[]1 2

1 12 1 1

21 2 2 2

1 2

1 2

2

()

• ... 0 ... 0

...

...

...

...

...

0.1 (1)

1

0.1

Q

i

ri

ri jr

T T

N

N

N

N N N N

N

d s
i

d s
i

i

d d s

ij

A r r r r

where

x w w y

w x w y

A

w w x y

z z z s

a N
x s e

N d
b

y e
N d

z

a
w e

N d

−

−

− +

 =

 =

+ ⋅ −= +
⋅

=
⋅

= −
−= ⋅

⋅

The system is locally asymptotically stable
when all the solutions of the equation det[A] =
0 have real part smaller than 0. The problem
from now on is not a control theory one, it is
just about investigating the values for a and b
that lead all roots to have negative real part.
Nevertheless, such a computation is not at all
trivial because of the exponentials. From now
on, we describe our derivation for 2 users.

When N=2, matrix A is equal to:

1 1 2 1

2 1 2 2

()
2

()
2

0.1 0.1

2 2 2
0.1 0.1

2 2 2
1 1

r r r

r r r

ds d d s d s

d d s d s d s

a a b
s e e e

d d d
a a b

A e s e e
d d d

s

− − + −

− + − −

+ − + ⋅ ⋅ ⋅
− + = ⋅ + ⋅ ⋅

 − −

The corresponding characteristic function is:

1 2 1 1 2

2 1 2 1 2 1 2

1 1 2 1 2 2

1 1 2 2 1 1 2 2

() (2)2

(2) (2())2 3 3

() ()

(2) (2)

0.1 a (0.05 0.5) (

)

{0.05 0.05

0.5 0.5 }

r r r r r

r r r r r r r

r r r r r r

r r r r r r r r

d d s d d d s

d d d s d d d d s

d d d s d d d s

d d d d s d d d d s

d e s a d e

e s d e s

b e e

d e s d e s

+ + +

+ + + + +

+ + + +

+ + + + + +

⋅ ⋅ ⋅ ⋅ + + +

+ + +

+ + +
⋅ ⋅ + ⋅ ⋅

In order to avoid the calculations with
exponentials, we use the well-known 1st order
Padé approximation:

1
2

1
2

ws

w
s

e
w

s

−
− +

=
+

This generates a 9-order polynomial, whose
coefficients are derived with the aid of
Mathematica. The Matlab code we wrote
investigates the solutions of the polynomial
under different values for a, b and delays. For
each specific value of a and b, we examine the
roots of det[A] = 0 under different values for
the delays d1r, dr1, d2r and dr2. If we derive a
root with non-negative real part, this means
that the system is unstable. In the following
plot the red spots (highlighted region)
correspond to a and b values that lead to
instability for some combination of delay times
and the white spots to a and b values which
make the system stable for all the delay values
we tried:

Figure 1: Plot showing the stability region for
different values of a and b

This figure has been created with delays
ranging from 0 to 20 sec and a 0.05 resolution
for parameters a and b. The reason for
choosing such values for the RTTs is that
Padé’s performance for high delays is not very
good. Since the increase of propagation delays
makes the system less stable, we expect that
the region of stability depicted in Figure 1 will
be smaller. Nevertheless, we ran the MATLAB
program we wrote for delays of up to 6 sec and

found that the stability area is about the same,
due to the fact that Padé approximation is
“more relaxed” as delays increase. Any other
more accurate approximation and methodology
can be used in order to simplify the solution of
the det[A] = 0 equation.

Furthermore, additional stability simulations
for the two-users case have been made using
the Simulink model shown in Appendix A.
The plots found in Appendix B depict the
behavior of the system under different values
for the parameters a and b and the delays d1
and d2.

The reason for following the procedure
described above to prove the conditions for
stability is that we wanted to investigate all the
values of a and b which make the system
stable. In this way, we avoided imposing
constraints in the a and b values as Dina Katabi
does in [12] in order to simplify the amplitude
and angle equations of the open-loop transfer
function.

4. Simulations under ns-2
Design decisions and implementation

We implemented XCP as presented in [12]
with the following changes:

• Users never request negative feedback
when it occasionally happens that router sends
positive updates that make the sender’s
congestion window larger than what is
requested by the sender. This was found to
cause instability and limit cycles especially
when users are few.

• Estimation of queue occupancy is done
over the complete control interval d, not just
during the "last propagation delay" as
mentioned in [12]. This part of the paper is
unclear and potentially requires keeping
significant state in the router, which defeats the
purpose of simplicity of the protocol.

• Each sender maintains a low-pass filtered
estimate of RTT. The TCP Tahoe RTT
estimation ns-2 code was consistently found to
estimate RTT wrongly for all configuration
values of tcpTick attempted, and this was a
major source of errors.

To the best of our knowledge we built a correct
implementation of XCP. The following figure
for example is similar to figure 12 of [12]
derived for the adversarial case of two users
having different RTTs:

Figure 2

Simulation setup

In all cases mentioned below we used the
topology of figure 2 of [12] where the link
connecting the XCP router and the traffic sink
is the bottleneck link. All users are connected
to the traffic sink through this XCP router.

Performance observations

Our simulations were in general in accordance
with Dina Katabi’s claim that XCP is stable
and achieves fairness and high efficiency when
parameters a and b take the values 0.4 and
0.226 respectively. Our goal was to discover
deviations from the ideal behavior described in
[12] by applying appropriate adversarial traffic
(large differences in RTTs and variable with
time number of users).

• Fairness:

We found that XCP is generally fair to
different flows even if they belong to
significantly heterogeneous flows. However,
when flows with different RTTs are applied,
XCP sometimes discriminates among
heterogeneous flows. In Figure 3, the average
rates for users 1 and 2 were 1007 kbps and
987kbps respectively:

Figure 3

In Figure 4, the rates were 3200kbps and
2800kbps respectively:

Figure 4

• Stability and transient behavior:

We tested the protocol with values for
parameters a and b within and out of the
stability region we derived in our previous
analysis for two flows. Simulation indeed
showed that flows eventually converge to a
steady state for values chosen in this region.
We also observed that as we come closer to the
instability region the limit cycles have greater
width, the utilization drops and fairness is not
achieved. As expected, if we go far enough
inside the unstable area oscillations are huge
and throughputs do not converge. Additionally,
higher values for parameter a lead to faster
response of the system to changes of inputs.
Therefore, there is a tradeoff in choosing the
value for a between speed of response and
stability margins.

The following scenario illustrates the impact of
choosing parameter a. Seven users share an
underutilized link. At time t = 10 an additional
flow with small RTT starts sending packets.
The following figures show that both faster
response and higher utilization can be achieved
for values of a that are greater than the
maximum value proposed in [12]. Figure 5 is
derived with a = 0.4 and Figure 6 with a = 0.7:

Figure 5

Figure 6

Note 1: The temporary drop in utilization is
due to the concept of “shuffled traffic” used in
XCP.

During the transient phase XCP exhibits
significant oscillations in the users' sending
rates, typical of a control system. Eventually
these oscillations diminish and throughputs
converge. Moreover traffic becomes
interleaved and thus no high queue
occupancies happen except in the transient
phases following changes in the number of
users (see the following figures as well as
Figure 4):

Figure 7

Figure 8

We observe that queueing delay during the
transient period is not negligible. Queues grow

very large initially and then converge to small
values.

Convergence to the steady state may last long
even if there is available bandwidth, contrary
to what stated in [12, par. 3.3]. In Figure 5, for
example, the flow that enters at t = 10 needs
10-15 sec to reach its steady state data rate.

5. References
[1] F.P. Kelly, A.K. Maulloo, D.K.H. Tan.
Rate control in communications networks:
shadow prices, proportional fairness, and
stability. 1998

[2] R. Johari and D. Tan. End-to-end
congestion control for the internet: delays and
stability. 2000

[3] L. Massoulie. Stability of distributed
congestion control with heterogeneous
feedback delays. Nov. 2000

[4] Glenn Vinnicombe. On the stability of end-
to-end congestion control for the Internet. Dec.
2000

[5] S. Low, D. Lapsley. Optimization flow
control, I: basic algorithm and convergence.
Dec. 1999

[6] V. Misra, Wei-Bo Gong, D. Towsley.
Fluid-based analysis of a network of AQM
routers supporting TCP flows with an
application to RED. 2000

[7] C.V. Hollot, V. Misra, D. Towsley, Wei-
Bo Gong. A control theoretic analysis of RED.
April 2001

[8] C.V. Hollot, V. Misra, D. Towsley, Wei-
Bo Gong. On designing improved controllers
for AQM routers supporting TCP flows. April
2000

[9] S. Low, F. Paganini, J. Wang, S. Adlakha,
J.C. Doyle. Dynamics of TCP/RED and a
scalable control. July 2001

[10] F. Paganini, J. Doyle, S. Low. Scalable
laws for stable network congestion control.
2001

[11] Glenn Vinnicombe. Robust congestion
control for the Internet. 2002

[12] Dina Katabi, M. Handley, C. Rohrs.
Internet congestion control for future high
bandwidth-delay product environments. 2002

[13] D. Bishop. Modern Control Systems,
Addison Wesley, 8th edition

[14] J-J Slotine, W. Li. Applied non-linear
control. Prentice Hall, 1991

[15] J.E. Marshall. Control of time-delay
systems. New York 1979

[16] L. Dugard, E.I. Verriest. Stability and
control of time-delay systems. London 1998

[17] F.P. Kelly. Models for a self-managed
Internet. 2000

[18] “NS-2 network simulator” found at
http://www.isi.edu/nsnam/ns/

APPENDIX A: SIMULINK Model for 2 sources

Figure 9: The Simulink model for 2 sources

The previous figure shows the model we developed with the aid of Simulink. Its main
components are:

• The rate integrator, which receives the derivatives of rates from the ‘rderiv’ component
and outputs the instantaneous rates r1(t) and r2(t).

• The delay components, which take the two rates r1(t) and r2(t) as inputs and output a
delayed version of them.

• The ‘queue’ subsystem, which calculates the queue rate ()q t
g

and the instantaneous queue
size q(t), taking into account that the queue size can never be negative. Then, q(t) passes
through the appropriate delay components and enters the ‘rderiv’ component.

• The ‘rderiv’ component, which receives the delayed version of queue size and rates,
calculates the feedback and adjusts the rates r1(t) and r2(t) according to the XCP protocol. The
following Matlab code has been written for the implementation of this functionality:

%Calculates the derivatives of rates
% given the instantaneous queue size (delayed appropriately)
% and the instantaneous rates (delayed appropriately)
function rderiv = rderiv(input)

global N cap d1 d2 a b;

%help variables
r1_d1=input(9);
r1_dr2d1r=input(3);

r2_d2=input(8);
r2_d2rdr1=input(6);

%queue size
q1 = input(1);
q2 = input(2);

%average rtt
d = (d1+d2)/N;

%feedback
fbk1 = -a/d*(r1_d1+r2_d2rdr1-cap)-b/d^2*q1;
fbk2 = -a/d*(r2_d2+r1_dr2d1r-cap)-b/d^2*q2;

%if choice is 0, then the rate derivatives calculations are done
% under the assumption that the coefficient for [-y’(t)]+
% is 1/N and not {r_i/(r_1+r_2)}
%if choice is 1, then no such assumption is made
choice = 1;

%calculation of rate derivatives (assumption is made, see above)
if choice == 0

 if fbk1>=0
 rderiv(1) = 1/N*(fbk1 + 0.1/d*(r1_d1+r2_d2rdr1)) -...
 (1/N)*(0+N*r1_d1*0.1/d);
 else
 rderiv(1) = 1/N*(0 + 0.1/d*(r1_d1+r2_d2rdr1)) -...
 (1/N)*(-fbk1+N*r1_d1*0.1/d);
 end

 if fbk2>=0
 rderiv(2) = 1/N*(fbk2 + 0.1/d*(r1_dr2d1r+r2_d2)) -...
 (1/N)*(0+N*r2_d2*0.1/d);
 else
 rderiv(2) = 1/N*(0 + 0.1/d*(r1_dr2d1r+r2_d2)) -...
 (1/N)*(-fbk2+N*r2_d2*0.1/d);
 end

%calculation of rate derivatives (without the assumption, see above)
else

 if fbk1>=0
 rderiv(1) = 1/N*(fbk1 + 0.1/d*(r1_d1+r2_d2rdr1)) -...
 r1_d1/(r1_d1+r2_d2rdr1)*(0+0.1/d*(r1_d1+r2_d2rdr1));

 else
 rderiv(1) = 1/N*(0 + 0.1/d*(r1_d1+r2_d2rdr1)) -...
 r1_d1/(r1_d1+r2_d2rdr1)*(-fbk1+0.1/d*(r1_d1+r2_d2rdr1));
 end

 if fbk2>=0
 rderiv(2) = 1/N*(fbk2 + 0.1/d*(r1_dr2d1r+r2_d2)) -...
 r2_d2/(r2_d2+r1_dr2d1r)*(0+0.1/d*(r1_dr2d1r+r2_d2));
 else
 rderiv(2) = 1/N*(0 + 0.1/d*(r1_dr2d1r+r2_d2)) -...
 r2_d2/(r2_d2+r1_dr2d1r)*(-fbk2+0.1/d*(r1_dr2d1r+r2_d2));
 end
end

%send feedbacks to output
rderiv(3) = fbk1;
rderiv(4) = fbk2;

Appendix B: Instantaneous rate plots
The following plots have been derived with the aid of the ‘Scope3’ component shown in
Figure 9. Please, refer to Appendix B for the details about the Simulink model we used.

Figure 10: when we make the approximation that [dy/dy]+and [-dy/dt]+ can

be unified, we get the same rates for users 1 and 2 as in the normal case

Figure 11: quick convergence when delays are small

Figure 12: slow convergence for larger delays

Figure 13: ‘oscillatory’ convergence when the values for a and b determine
a point close to the boundary between stability and instability (small delays)

Figure 14: ‘oscillatory’ and slow convergence when the values for a and b

determine a point close to the boundary between stability and
instability(large delays)

Figure 15: Continuous oscillations for an (a,b) point residing in the area of

instability

