
1

Scheduling Algorithms to Minimize Session Delays
Nandita Dukkipati and David Gutierrez

I. INTRODUCTION

A. Motivation

TCP flows constitute the majority of the traffic volume in the
Internet today. Most of the traffic is carried by only a small
number of flows (elephants), while the remaining large number
of flows are very small in size or lifetime (mice). Provision of
Quality-of-Service (QoS) to the flows is an important issue in
the Internet. The long flows and short flows have different QoS
requirements. In this paper, we are interested in the QoS provi-
sioning for the short flows. Short connections expect relatively
faster service than the longer connections i.e. an important mea-
sure of QoS for short flows is the response time as seen by a user.
The response time as seen by a user is the time interval between
the time of session initiation and the time when the last packet of
the session is received. Henceforth, we will refer to this measure
as the session delay. However, the Internet today just provides a
Best Effort service to all flows and does not have any mechanism
to provide QoS measures such as delay, throughput, packet loss
and delay jitter. Thus, there is no mechanism in the Internet to
reduce the response time for the short connections.
Thus, it is of interest to minimize the average response time for
short connections in the network. The two fundamental pieces
for QoS implementation in the network are:
1. QoS within a single network element (for example: buffer
management schemes, scheduling algorithms and traffic shap-
ing).
2. Techniques for coordinating QoS at each of the network ele-
ments to provide end-to-end QoS.

Schedulers at the network nodes are an important element
of QoS provisioning. Scheduling algorithms are used to select
packets for transmission on a link and hence control the band-
width allocation among different flows at a node. The schedulers
at different nodes in the network have to coordinate in order to
provide an end-to-end QoS. There is no known optimal schedul-
ing discipline to minimize the average session delays in either
the single node case or the network case 1. So, at this point the
natural questions that arise are: How do the different schedul-
ing disciplines proposed in the literature perform relative to each
other, with respect to the average session delay in both the single
node case and the network case? Is there an optimal scheduling
discipline (i.e. a schedule that can minimize the session delays)
under a known arrival traffic pattern? These questions motivate
us to address the problem proposed in the following Section.

B. Problem

There are two main problems considered in this paper:�����
Given a deterministic arrival traffic pattern, determine an op-

timal schedule in the single node case and the network case. An
�
Shortest Job First is an optimal discipline to minimize delays in the single

node case, for a very specific arrival pattern. This will be elaborated further in
the Section III

optimal schedule is one that minimizes the average session de-
lay.
Generalized Processor Sharing (GPS) is a well studied schedul-
ing algorithm in the literature and has very interesting band-
width sharing properties. The next part of the problem in this
paper is to use these properties of GPS to minimize average ses-
sion delays.�����

Given a network of GPS schedulers and a known arrival traf-
fic pattern, find the weight (or) allocations for sessions at every
node along their path, in order to minimize the average session
delay.

C. Relation to Previous Work

It is known in the scheduling literature that Shortest Remain-
ing Processing Time (SRPT) policy is an optimal discipline for
the following scenario: Jobs arrive at a queueing system at arbi-
trary known times. They are served by a single server according
to a preemptive policy. It is assumed that the server knows the
service times of the jobs as soon as they enter the queue. For this
scenario, it is proved in [3] that the SRPT policy minimizes the
average delay of the jobs. It is however, not clear whether SRPT
is an optimal schedule when “jobs” in the above setting are re-
placed by “sessions” (or flows). The main difference arises from
the fact that in [3] an entire job arrives to the queueing system at
a time instant, while in the queueing system considered in prob-
lem (1), a session arrives to the system with an arbitrary known
arrival process. There is no work in the literature that addresses
the problem of an optimal schedule under such a scenario either
in the single node case or the network case.

Papers [1] and [2], which propose GPS, and other work in lit-
erature deal with the problem of obtaining a bound on per packet
delay for sessions in GPS schedulers, given a particular weight
allocation for the sessions. Problem (2) proposed above is differ-
ent in two ways: First, the problem here, i.e. to find the weight
allocations to minimize the session delays, is the inverse prob-
lem of the ones addressed in the literature. Second, previous
work was interested in obtaining bounds on per packet delay. In
our case we are interested in the total session delay. These two
features differentiate the problem being addressed in this paper
from all the previous work in the literature.

D. Research Contributions

The main contributions of this paper are:
 An optimal schedule for minimizing average session delays at
a single node for

�
sessions.
 A heuristic schedule to obtain low average session delays in

the case of � sessions at a single node.
 Weight allocation for sessions in Generalized Processor Shar-
ing schedulers to realize a strict priority schedule, including the
Shortest Job First schedule.
 A lower bound on average session delay in the multiple node
case.

2

 A heuristic to schedule sessions to obtain a low average delay
in the multiple node case.

II. BACKGROUND

This Section provides a brief background on the scheduling
policies used in this paper and introduces the definitions of some
commonly used terms.
We assume a network of nodes where each node in the network
uses a scheduling policy to schedule packets from the set of ses-
sions arriving to the node. All results of this paper hold true for
arbitrary, deterministic and known arrival processes for all the
sessions. Throughout the paper, we consider fluid arrivals and
fluid service. The extension to packet arrivals and packet service
should not be difficult.
Definition 1: Session Delay: Let

���
be the arrival epoch of the

first bit of the session � to the network and let � �
be the departure

epoch of the last bit of the session � from the network. Then, the
Session Delay, � �

, is defined as:

� ��� � �	�
���
Definition 2: Average Session Delay: Let � be the number of
sessions at a node (or the network in the multiple node case).
Then, the average session delay, � , is defined as:

� � �
�
 ����� � � ��� �

Definition 3: Optimal Scheduling Policy: A scheduling policy at
a node is said to be optimal under a particular arrival process if
it minimizes the average delay of the sessions under that arrival
process.
A Generalized Processor Sharing scheduler [1] serving � ses-
sions is characterized by � positive real numbers, 	 ����������� 	 � .
These numbers denote the relative amount of service given to
each session in the sense that if � � ��� ��� �

is defined as the amount
of session � traffic served by the GPS server during an interval� � ��� �

, then:

� � ��� ��� �
��� � � ��� �"! 	 �

	#� �%$ � � �&�&���'� � (1)

for any session � that is continuously backlogged in the inter-
val

� � ���)(
. Thus, (1) is satisfied with equality for two sessions �

and
$

that are both backlogged during the interval
� � ���)(

. Note
from (1) that whenever session � is backlogged it is guaranteed
a minimum service rate of

* � � 	 �
+ �� �,� 	#�.- (2)

where - is the capacity of the server.
Shortest Job First (SJF) is a non-preemptive policy that sched-
ules the jobs in increasing order of their sizes. It provides the
least average job delay among all non-preemptive scheduling
disciplines. However, the SJF policy is optimal only when all the
jobs are present at the server at once i.e. the jobs cannot arrive at
arbitrary arrival epochs. There is no known non-preemptive pol-
icy which is optimal when the jobs can arrive at arbitrary arrival
epochs.

C = 25

S = 20

S = 5

1

2
Scheduler

1

2

Fig. 1. Example to illustrate that SJF is not optimal when session traffic arrives
at an arbitrary rate

The Shortest Remaining Processing Time (SRPT) is a preemp-
tive policy that at all times processes that job, of those avail-
able, which has the shortest remaining processing time. The
jobs could arrive to the system at arbitrary known times. It is
assumed that the server knows the service times of the jobs as
soon as they enter the queue. It is proved in [3] that with the
SRPT discipline the number of jobs in the system at any point
in time is less than or equal to the number of jobs in the system
for any other rule simultaneously acting on the same sequence
of arrivals and processing times. SRPT minimizes the average
delay of the jobs.

III. MINIMIZING DELAY IN THE SINGLE NODE CASE

In this Section we address the problems
��� �

and
�����

described
in Section I-B for the case of a single node. We saw in Section
II that the SJF policy is an optimal policy for minimizing the
average delay of the jobs if all the jobs are present in the system
at time

� �0/
. Now, consider a single node system in which all

sessions start arriving at time
� �1/

. We introduce some notation
here to describe the system:
 � : The total number of sessions in the system.
 �2� � � �

: The arrival rate of the traffic of session � at time
�
. We

assume that
��� � � �

is known for every session � and for all time�
.
43 �

is the size of session � (in fluid units, ex. bits).
Then, 576

8 ��� � � � � � � 3 �
A question that arises now is: Is SJF an optimal policy for the
system described above?
The following example illustrates that SJF is not an optimal pol-
icy for the above system. The example has two sessions: Session�

has a file size of 3 � � � /
and the entire file is present at the

node at time
� �9/

. Session
�

has a file size of 3;: �9<
and

starts arriving to the system at time
� �=/

at a constant rate of<
i.e.

� : � � � �>< � /@? � ? �
. The server capacity is -

� � <
.

A SJF scheduler would give the highest priority to session
�

since it is the shortest job and would serve it at a rate equal to
its arrival rate i.e.

<
. The remaining capacity of the node, i.e.� /

is then allotted to session
�
. Then, the total delay, � , un-

der SJF = � �2A � : � � A � � �
. On the other hand, serving

session
�

completely before serving session
�

gives a delay of:� � A � : � � � / � � < � A � � � � B
. Clearly, there is no benefit in

giving a higher priority to the shortest job in this example, since
the shortest job is bottle necked by its arrival rate to the system.
Thus, SJF is not an optimal policy in such a system.
The above example also serves to illustrate that the SRPT disci-
pline, which is the preemptive version of SJF, is not optimal in

3

Capacity

t1t2 0 t1t 2 0

(b)(a)
time

1

2

1

2

Fig. 2. (a) Optimal Schedule 1 (b) Optimal Schedule 2

the system of our interest. Another policy considered was Short-
est Remaining Time First (SRTF), i.e. an SRTF scheduler would
give the highest priority to the session that has the shortest time
for its last bit to arrive completely to the scheduler. It can be
seen through a simple example that such a policy is not optimal
either.

A. Optimal Schedule for 2 Sessions

In this Section we identify an optimal schedule when there are
two sessions at a single node. The arrival process of the sessions
is arbitrary but known. The example in Figure III-A shows that
an optimal schedule need not be a unique schedule. Consider
the following arrival process: Session 1 has an arrival process
as shown by region 1 in the Figure III-A(a) and session 2 has an
arrival process as shown by region 2 in Figure III-A(b). Then,
it is clear that both the schedules as shown in III-A(a) and III-
A(b) are optimal. The delay of session 1 in both the schedules
is

� : � � �
and that of session 2 is

� : .
The main motivation for the optimal schedule proposed here,

is derived from the example in Figure 1. The optimal schedule
must not only take the session size into consideration but also
the session arrival process. This implies that if the shorter of
the two sessions arrives over a very slow link, then it is possible
that it is better for the scheduler to first devote its resources for
the longer size session and then complete serving the shorter
session by the time the last bit of the shorter session arrives.
This motivates us to define a scheduling policy called Shortest
Time to Finish First (STFF).
Definition 4: Session � is said to have a higher priority than ses-
sion

$
in a schedule, if the session

$
is never served as long

as session � is backlogged. In other words, session � is always
given as much capacity as it can use, and the remaining capacity
is used to serve session

$
.

The basic idea of the STFF algorithm is to prioritize the ses-
sions according to the minimum time that they would take to
finish, i.e. the time that each session would take to complete if it
were allotted the entire server capacity, - . The STFF algorithm
for the case of

�
sessions is described below:

STFF:
Step 1: Compute the minimum time to finish for every session� � � � � �

maximum service rate session � can receive at time
�3 ���

Size of session ���� � ��� ���	� ��

���8 � � ��� � � � � 3 ��� � � � � � �
Step 2: Determine the schedule��� ��� ��� ��� :
then session 1 has a higher priority then session 2;
else session 2 has a higher priority than session 1.

As an example; consider the example in Figure 1. The STFF
schedule gives a higher priority to session 1, because

��� � �1/ � B
is less than

��� : � �
. Thus, it serves session 1 before serving

session 2, which is optimal in this case. The following Lemma
proves the optimality of STFF in the two session case.

Lemma 1: The STFF discipline minimizes the average delay
of two sessions at a single node server.
Proof: The following notation is used:
�� � � � � �

fraction of the server capacity devoted to session � at
time

�
,� � � � � � /

; for
� �

arrival time of session � ,� � � � � � /
; if there are no flow � bits in the server at time

�
,
 3 �

: Size of flow �
 -
�

Completion time of flow i, i.e. the time when the last bit
of flow i departs from the system

-
����� ���	� ��

5 �
8 � � ��� � � - � � � 3 � �

The superscript, � , is used to identify measures related to any
arbitrary schedule and the superscript, � , is used to identify the
measures related to the STFF schedule. No superscript is used
for a statement that is true for both schedules.
Clearly, -

� A
- � ��� ��� � -

� �
- � � A ���! �

-
� �

- � � . Also:���
 �
-
"� �

-
"� � �

� � ���	� �#

5 �
8 � � "� � � A � "� � � � � - � �� 3 � A 3 � �

� � ���	� �#

5 �
8 � �%$� � � A �%$� � � � � - � �� 3 � A 3 � �� �&�! �

- $
� �

- $�
�

(3)

i.e. regardless of how � and
$

are scheduled from
� / �(' �

, the
last session will always finish at the same time, given that the
system is work-conserving. On the other hand,

� ��� � -
���

- � � is
minimized if the sessions are scheduled according to STFF. This
follows from the definition of STFF, i.e. the function:

� ���	� �#

5 �
8 �*) � � � - � � 3+) �

is minimized by choosing , as the session which has the shortest
time to finish. Therefore,

� ��� � - $
� �

- $�
� ?-� ��� � -

"� �
-
"� �

It follows that:
�&�! �

- $
� �

- $�
� � ���
 �

-
"� �

-
"� � and� ��� � - $

� �
- $�

� ?.� ��� � -
"� �

-
"� � . Therefore the STFF discipline

in the case of 2 sessions is optimal.

B. Schedule for � Sessions

There could be multiple schedules which are optimal in the
� session case. Let � 3 "�/ � � be the set of all optimal schedules.
Let � be an optimal discipline that 01� 3 "�/ � � , and � and

$
be

any two sessions. Let � $� � � � be the fraction of server capacity
occupied by session � at time

�
. Then, the capacity occupied by

the two sessions at time
�

is:
� � $� � � � A � $� � � � � � - . Let 2 $� � � � � �

� � $� � � � A � $� � � � � � - . Let 2 $� � � �32 $� � � � � � , i.e. 2 $� � is a function

4

of time that represents the bandwidth occupied by the sessions �
and

$
, in the schedule � .

Definition 5: A scheduling discipline, � , is said to be pairwise
STFF, if for every pair of sessions, � and

$
, the departure epochs

of sessions � � $ are the same as those if STFF were practiced for
sessions � �)$ within the bandwidth function 2 $� � , of the schedule
� .
The following Lemma identifies a characteristic of the optimal
solution in the case of � sessions at a node.

Lemma 2: Every optimal discipline in � 3 "�/ � � must be pair-
wise STFF.

The proof of this Lemma follows easily from Lemma 1. If an
optimal schedule � is not pairwise STFF, then there exist a pair
of sessions � and

$
, which when rescheduled within the band-

width 2 $� � , according to the STFF discipline, will produce a more
optimal solution (by Lemma 1). This contradicts the assumption
that � is an optimal discipline.

The following algorithm extends the STFF algorithm for the
case of � sessions.
STFF-N:
Step 1: Initialization
�

Set of all sessions
� /

Set of all sessions whose priorities have been decided;
� / � �
Step 2: Loop to prioritize the sessions
for

$�� �
to � ���

Step 3: Compute the minimum time to finish��� �;�
Time to completion of session � if the remaining unallot-

ted capacity were fully available for use; �.� 0 � � � � / �
Step 4: Assign the priority

$
to session , , where���) � � ��� ���	� ��
.�
��� ��� �

;
Step 5: Update � / and remaining capacity
� / � � /�� � , ���
-
� � � �

-
�

(capacity taken by sessions 0 � /) � � ; - is the total
capacity

The basic idea of the algorithm is to compute the minimum
time that each of the sessions would take to complete if they
were given as much capacity as available, then assign the session
which has the minimum time to completion the highest priority.
A prioritized session is no longer considered in the subsequent
iterations of the algorithm. The capacity that is taken by the
prioritized sessions is subtracted, to get the available capacity.
The algorithm goes on to the subsequent iteration, and computes
the minimum time to finish for the remaining sessions with the
new available capacity. On termination of the algorithm, each
session is assigned a priority. The final schedule then serves the
sessions with these priorities.
The next question that arises is: Is the 3 ��� � � � discipline
optimal? Figure 3 illustrates an example to show that STFF-
N is not an optimal discipline. In this example, there are three
sessions. Session

�
is present completely in the system at time� � /

and takes time
� � � � to complete when assigned the full

server capacity. Sessions
�

and � arrive to the server at a rate
each of -

� �
from time

� �0/
to

� � � �
. The STFF-N schedule

(shown in Figure 3(a)) gives the highest priority to session
�
,

since it has the minimum time to completion. It serves sessions�
and � after completing serving session

�
. Therefore, the delay

of each session is: � � � ��� � � ; � : � � ��� � � � A ��� � �
and ��� �

t1−δ
3 t1_
2

− δ
t1− δ2

C C

t1
− δ

(a) (b)

1t2

123 1
2

3

Fig. 3. (a) STFF-N schedule (b) Optimal schedule

� ��� � � � � � � � A � � � �
. That gives a total delay of : ���������
	� �� � � � � � � ��� � , while if the sessions

�
and � are scheduled

before session
�
, as shown in Figure 3(b), then the total delay is:� " � ��� A7��� A ��� � ��� � � � � � � ��� � � . If � is chosen small

enough then, � " � �!���"�
�
.� .
The solution in Figure 3(b) is the optimal solution for the

above example. Note, that the pairwise STFF property is sat-
isfied in both schedules. Thus, pairwise STFF property is a nec-
essary but not a sufficient condition for optimality. The prior-
ity assigned to the sessions based on the shortest time to finish,
when �$# �

, is not necessarily the optimal priority. Does there
exist a strict priority of the sessions that yields an optimal sched-
ule? This remains an open question.

IV. MINIMIZING DELAYS IN A GENERALIZED PROCESSOR

SHARING SCHEDULER

In Sections III-A and III-B, we were interested in defining an
optimal priority based schedule for minimizing the average ses-
sion delay. In this Section, we assume a Generalized Processor
Sharing (GPS) scheduler in a single node system. The problem
addressed is: Given a set of � sessions, each with an arbitrary
but a known arrival process, what is the weight allocations for
these sessions in a GPS scheduler that would minimize the av-
erage session delay?

As a starting point, first consider the simple scenario, when
the entire traffic of all sessions is present in the server at time� � /

. In this case we know that serving the sessions in the
increasing order of the file sizes, or practicing the shortest job
first schedule is optimal. So, the question now is: Can we assign
weights in GPS, such that the sessions are served in the increas-
ing order of the file sizes ? It is possible to do so, and the method
is shown below.

Let � � � � : �&���&��� � � denote the sessions in increasing order
of session sizes. Then, the problem is to find weights
	 � � 	 : �&���&��� 	 � such that:

	 �&%
+ �) �,� 	 �(' �

-
�

-
� � (4)

	 �*)
+ �) � : 	 �(' �

-
�

-
� � (5)

...

	 �&+-, %
+ �) � �.
 � 	 �(' �

-
�

-
� � (6)

5

�

) ��� 	 �&' � �

(7)

	 � # / � � � � ���&�&�&� � (8)

In the above equations � can be chosen arbitrarily small, but
positive. � has to be # /

because the weights of all the sessions
are positive and therefore if a session �)� is being served then all
the sessions with file size greater than that of � � also receive a
small amount of service, which is � . The above set of simul-
taneous equations can be solved to obtain the 	 �

values. As an
example:
� � �
 	 � %4� � � �� � 	 �*)�� ��
� � �
 	 � %4� � � �� � 	 �*)�� ��� � �� � �� � 	 ���2� � �� � :
In general, for � sessions, the solution is:

	 ���2� � � � �

-
� � �

-
� �
 � � � ? $? � � �

	 � + � � �

-
� �.
 �

(9)

The next question of interest is to find the difference in the
total delay obtained by SJF and the delay obtained by GPS with
the above 	 allocations. As before, let � � � � : �&���&�'� � � be the or-
dered set of sessions (in increasing order of the file sizes). Let3 ���

be the file size and � ���
be the delay experienced by session �)�

in SJF scheduler. Then: � � % � ��� %� � � �)2� � � % A �	�)� ���&���'� � �(+ �
� �(+-, % A � � +� . The total delay of the sessions under the SJF
scheduler is:

�!��
 � � � � 3 � % A � � � � � � 3 �() A � � � � � � 3 ��� A �&��� A 3 � +
The total delay experienced by the sessions in GPS with the

weight allocation obtained in (9), can be computed with a little
algebra. For example:
� � � � � �&% � �	� %�
 � � � � % � ��� %
� ���)�
� � � � � �&% � �	� %�
 � � � �()2� ��� %� A ���)�
 � � � ���2� ��� %�� ���)�� ��� ��
The general expression for the total delay in GPS, after rearrang-
ing some terms, for � sessions is:

�����-� � � � � ��� � 3 �&%
-

A � � � � � � 3 �*)
-

A1�&��� A 3 � +-, %
-A 3 �&+

-
A 3 � %

-
� � A 3 �)

-
� � A ���&� A 3 �&+-, %

-
� � (10)

The difference between the delays is:

�����
� � �!��
 � � �

- �
�
-

� � �
��
 �
 ����� 3 �

Thus, if the number and the total size of the sessions is fixed,
then � can be chosen arbitrarily small in order to have a negligi-
ble difference between the delays of GPS and SJF schedulers.
SJF is an example of a strict priority scheduler. In SJF the ses-
sions have a strict priority based on the size of the sessions. If� � � � : �&���&�'� � � is some other priority of the given sessions, then
the weight allocation obtained in (9) can be used in GPS to re-
alize these priorities. Therefore, GPS can realize any strict pri-
ority based schedule.

In the general scenario, when the arrival process of the ses-
sions is arbitrary, we saw in Section III-B that choosing an op-
timal priority for the sessions, that minimizes the total delay,
is not trivial. However, if such a priority exists, then the GPS
weights can be chosen as in (9), to realize the priority. If a higher
priority session cannot take the entire bandwidth, then GPS dis-
tributes the remaining bandwidth to the lower priority sessions
in proportion to their weights. As a result, the next higher pri-
ority session gets the major portion of the remaining bandwidth.
This is possible due to the nice bandwidth sharing properties of
GPS and the choice of the above weights.

V. MINIMIZING DELAY IN THE NETWORK CASE

Minimizing average session delays in the network case is sim-
ilar to the Job Shop scheduling problem, which is NP-hard. In
this Section we propose heuristics to schedule the sessions in
the network case in order to obtain a low average session delay.
Simply extending scheduling techniques that provide good re-
sults for the single node case described above is not enough for
the multiple node case, since these techniques do not use any
information on how the session flows interact with each other at
different nodes throughout the network.

A. A Lower Bound

In this Section we obtain a lower bound for the average delay
of the sessions in the network scenario. The lower bound is
obtained as follows:
1. � : Set of sessions. For every session � 0 � identify the
bottleneck node (the node with the least capacity) along its path.
2.

�

Set of nodes. For every node , 0 �

:�) �
Set of sessions bottle necked at node , � , 0 �

�) � + ��� � + �
� � ���	� ��� 3 � � �+,.0 �
(Total session delay in

SJF scheduler)
3. Minimum Average Session Delay ! +) ��� �) � �
This bound holds true when all the sessions start at the same
time. The basic idea is that, if a set of sessions are bottle necked
by a node then the best possible way that they can be served by
that node would be if all the sessions were to be present entirely
at the node, and the node practices SJF schedule on them.

B. Heuristic Schedule

In this Section we present a heuristic schedule that provides a
strict priority at every node for every session that traverses it.
The following example illustrates that there need not exist any
strict priority of the sessions at every node that would yield an
optimal schedule.

In Figure 4, denote the three sessions by
 � � : and

 � . In this
example,

 �
goes through node 1,

 : goes through nodes 2 and
1, and

 � goes through nodes 2 and 3. Table I shows four ways
in which the priorities can be assigned at nodes 1 and 2, and the
corresponding total delay:

However, if the network nodes were to use the following
scheduling, the average session delay would be less:
1. Node 1 serves session 1 until

� � � / � � � <
.

2. Node 2 serves session 3 during the same period, thus keeping
node 3 busy.
3. Node 2 servers session 2 after

� � <
.

6

S = 20 2

S = 10 1

S = 25 3

C = 2

Node 1

C = 2

Node 2

Node 3

C = 1/2

Fig. 4. There does not exist an assignment of priorities that yields an optimal
schedule

Table I

Priorities Priorities
at Node 1 at Node 2 Total Delay Average Delay � # : : # � 80 26.67 � # : � # : 77.5 25.83 : # � : # � 85 28.33 : # � � # : 77.5 25.83

With this schedule, the delay for
 �

is
� / � � � <

, for
 : is< A � / � � � � <

and for
 � is

� < � ����� ���
. Thus, the total ses-

sion delay is 5 + 15 + 50 = 70 and the average session delay
is 23.33, which is less than any of the possible priority based
solutions. However, defining a schedule based on strict priori-
ties is simpler than any other schedule and that is why we are
considering them.
Priorities throughout the network nodes may be assigned in
many different ways: a particular flow could have a higher pri-
ority with respect to another flow at a particular node and a rela-
tively lower priority at another node. We define a network wide
priority, as one in which the relative priority for every two flows
is the same throughout all the nodes of the network. Equiva-
lently, a unique priority could be assigned for every session flow
on the whole network and every node could then simply apply
the priorities for the sessions that traverse it.
The Shortest Job First priority is an example of a network wide
priority. In the SJF priority, the shortest job in the network has
the highest priority at every node, the second shortest job has the
next highest priority and so on. However, as the example below
shows, using SJF is not the best way to assign priorities, since
the interaction among sessions at other nodes is being ignored
in this way of assigning priorities. That is, the fact that serving
a particular flow is reducing the available capacity at all nodes
along its path is being ignored.
For example, suppose we have a network of two nodes and
three flows as in Figure 5. Session 1 needs to go only through
node 1, session 2 needs to go through both nodes 1 and 2 and
session 3 needs to go only through node 3. If a Shortest Job
First priority is used in this case, session 2 will have the high-
est priority at both nodes. Thus, both session 1 and session
3 will be prevented from service at both nodes until session
2 is finished. Thus, the completion time of the sessions will
be - : � � < � � < � / � � �

-
�
�

- : A � / � � < � / � � A / � B �
� � � �

- �
�

- : A � / � � <�� � � �
. The average session delay will be�

-
� A

- : A
- �

��� � � � � � � � � � � � � . If the priorities had been

S = 15 2

S = 20 1

S = 20 3

C = 25

Node 1

C = 25

Node 2

Fig. 5. Two node network with three session flows

assigned considering the blocking information, i.e. the fact that
session 2 blocks session 1 at node 1 and session 3 at node 2, the
average session delay would be lower, as we will see below.
The heuristics we propose includes the blocking information of
every session flow by calculating its priority according to the
time it would take to traverse the network if the available band-
width was dedicated exclusively to servicing it, plus the addi-
tional delay that other sessions may incur if that particular ses-
sion was given a higher priority. The algorithm works based on
the premises that flows that have the shortest time to finish and
that block other sessions the least should be given a higher pri-
ority.
We will use the following notation:
Denote the set of all sessions to be serviced by � �
 � � : ��������� �

Definition 5: Time to Finish: The time to finish for a particu-
lar session

 �
is denoted by

����� � � �
and it refers to the amount

of time that it would take the network to service the session if all
of it’s available capacity was dedicated exclusively to that ses-
sion.
Definition 6: Blocking Delay: In a set of sessions whose prior-
ity has not yet been assigned, the blocking delay of a particular
session

 �
on another session

 � refers to the amount of time by
which the delay of session

 � would increase if
 .�

had a higher
priority than

 � . We will refer to this extra total network session
delay of

 � caused by
 �

(if
 �

had a higher priority than
 �)

as � � .� � � � ! /
. The algorithm described below will compute

the blocking delay among all the sessions that have not yet been
prioritized, while deciding on their appropriate priority.
Algorithm:
Denote the set of session flows whose priority has been decided
as � / . Note that the set of session flows whose priority has not
yet been assigned is � � � � / � .

On each iteration, the algorithm should consider all the ses-
sions whose priority is still unassigned. For each of the unas-
signed sessions, the algorithm calculates their corresponding� ���

given the available network capacity (that is the total net-
work capacity minus the capacity used by the sessions whose
priority has already been assigned), and their corresponding
blocking delay with all the other unassigned sessions. The sum
of
� ���

and blocking delay for each session gives the total cost
of a session. The algorithm then picks the session with mini-
mum total cost and includes it in � / with the next available pri-
ority. In other words, on each iteration the algorithm will assign
a priority for one session. This procedure is repeated until all

7

the sessions have been assigned a priority. It’s straightforward
to see that this algorithm is

� � � � � .
Pseudo-code:
Step 1: Initialization
� : Set of all sessions
� / � �

: Set of all sessions whose priorities have been decided
Step 2: Loop to prioritize the sessions
for

$ � �
to � � �

Step 3: Calculate the total blocking delay, time to finish and to-
tal cost for every session, � 	� 0 ��� � � / ���� ��� , ����� �	� � � � � � � � + � � � � � � �� ��� � � � �

time to process
 �

with the current network capac-
ity (that is, the total network capacity minus the capacity taken
by sessions 0 � / .� � .� � � � ��� � � � A �
� ��� , ����� �	� � � � � .� �
Step 4: Take the session with the least cost and assign it the pri-
ority

$
find the

�
for which

� � �� � ��� � � � � � � 0 � � � � / �
priority(

 ��
)

� $
;

include

�

in � /
Consider again the example in Figure 5. The network wide

priorities using the above algorithm are, from highest priority
to lowest,

 � � � � : . The average delay when these priorities
are used: -

� � � / � � < � / � B#�
- �

� � / � � < � / � B
and - : �

���
 �
-

� �
- : � A � < � � < � / � B A / � � � � � �

. So, the average
session delay will be

�
-

� A
- : A

- �
��� � � � � � � �

.
Note that if the SJF or STTF criteria had instead been used

at every node, as we saw before,
 : would have had a higher

priority at both nodes than
 �

and
 � , even though it’s block-

ing delay cost is high. As a result, the average session delay is� � � � � � � � � � , which is greater than the one we get using the
algorithm. Even though the improvement on average session
delay may not seem too much in this example, it can be inferred
that in more complex networks, as more session flows share the
same nodes, the blocking factor becomes more important and
greater gains may be obtained.

If we used this priorities and assigned GPS weights as de-
scribed in section IV-A, we can see how a network of GPS
schedulers will provide the same or better average session de-
lay than a network of SJF or STTF schedulers.

VI. SUMMARY AND FUTURE WORK

In this paper, we observed that in the single node case SJF
is not an optimal schedule when sessions have arbitrary arrival
traffic pattern. We then devised a scheduling algorithm, Shortest
Time to Finish First (STFF), and proved that it minimizes the
average session delay, in the case of two sessions at a single
node. However, we showed that STFF is not an optimal schedule
in the general � session case.

We also presented a method for weight allocation in GPS
schedulers to realize strict priority schedulers. This implies that
GPS schedulers can realize the Shortest Job First schedule, both
in the single node and the multiple node case. So, a network of
GPS schedulers is more generic than a network of SJF sched-
ulers.

In the multiple node case, we showed that there need not exist
a strict priority schedule of sessions that would also be an opti-
mal schedule. We also obtained a lower bound on the average

session delay in the multiple node case. Finally, we presented
a heuristic schedule to obtain low average session delays in the
network scenario.
Directions for future research include:
 Does there exist a strict priority schedule of sessions that
would also be an optimal schedule in the case of � sessions
at a single node ?
 Is the problem of finding an optimal schedule in the single
node case when there are � sessions with arbitrary arrival traf-
fic pattern, an NP-hard problem?
 Obtain tighter lower bounds on the average session delay in
the multiple node case.
 Compare the session delays obtained by the heuristics with the
lower bounds and improve the heuristics, in both the single node
and the multiple node case.

VII. ACKNOWLEDGMENTS

We thank Rui Zhang for some helpful discussions, specially
in the single node case.

REFERENCES

[1] A.K Parekh and R.G. Gallager, A Generalized Processor Sharing Ap-
proach to Flow Control in Integrated Services Packet Networks: The Sin-
gle Node Case, IEEE/ACM Transactions on Networking, vol.1, No. 3, pp.
344-357, June 1993

[2] A.K Parekh and R.G. Gallager, A Generalized Processor Sharing Ap-
proach to Flow Control in Integrated Services Packet Networks: The Mul-
tiple Node Case, IEEE/ACM Transactions on Networking, vol.2, No. 2,
pp. 137-150, April 1994

[3] Linus Schrage, A proof of the optimality of the shortest remaining pro-
cessing time discipline Operations Research, 16, 687-690

