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Abstract—This paper describes a switching scheme that can be used to
reduce delays in optical routers. Optical switches have a larger bandwidth
and can potentially use less power than electronic switches. However op-
tical switches take a significant amount of time (of the order of � sec) to
change from one configuration to another. This introduces a time lag be-
tween the scheduling decision and actual change in configuration, lead-
ing to higher delays. We propose a scheduling scheme that decides the
schedule for the future using maximum weight matching (MWM) on the
predicted lengths of the virtual output queues (VOQs). The prediction is
done using the adaptive Least Mean Square (LMS) algorithm. We show
through simulations for correlated arrivals that this scheme reduces delay
significantly in comparison to a scheme that makes a scheduling decision
for the future using MWM on the current lengths of virtual output queues.

I. INTRODUCTION

There has been a rapid increase in the bandwidth of high-
speed access technologies in recent years. Dense Wavelength
Division Multiplexing (DWDM) has increased the fiber trans-
mission capacity at an unprecedented rate, making routers the
main bandwidth bottleneck. Future routers need to accommo-
date hundreds of ports with line rates exceeding 80Gb/s. This
has led to a belief that routers in the future will use optical com-
ponents. If packet scheduling is used at such a high rate, with a
packet size of 40B, the crossbar needs to switch to a new con-
figuration every 4ns or less. (From this point onwards we will
refer to this time corresponding to packet switch as a single
time slot). This presents a great challenge in crossbar design
since an optical switch takes a few microseconds to change
from configuration to another. Hence in order to use an optical
switch efficiently, we would like to switch at a rate less than
once every time slot. A scheme that groups packets together in
envelopes and switches the envelopes has been proposed by K.
Kar et. al. [4]. However this results in unbounded delays at
low loads. The delay can be bounded using flow management
and multiple levels of scheduling, but this is at the cost of extra
complexity.

Devavrat et. al. [1] have shown that a simple scheme
that schedules packets in bursts gives

�������
throughput and

bounded delays. However the bound on the delay grows as
a function of the burst length. This motivates the question
whether we can reduce the delays by using past information of
the VOQs to predict the state in the future. This paper explores
the application of an adaptive linear filter to the prediction of
VOQ lengths. Even though most flows are short lived, most
of the packets belong to a small number of large flows (mice-
elephant phenomenon). Hence we can expect the weights of
the adaptive linear predictor to converge to optimal values for
the large flows, with noise about these values caused due to
the small flows. In the past linear predictors have been used
to model VBR traces (eg. [6]). However these papers find the
regression coefficients using least mean square error methods,
with the assumption that the second order statistics of the trace
are known before-hand. Hence this will give the best possible
performance; however in real life it is difficult to estimate the

second order statistics of incoming traffic at a router. Also the
statistics change with time leading to nonstationarity. This is
the reason why we propose an adaptive scheme as opposed to
a scheme with fixed linear coefficients.

The rest of the paper is organized as follows: in Section II we
consider different possible switch architectures. In section III
we study the average delay for these architectures. Section IV
describes the prediction scheme and discusses its convergence
and stability. Section V simulation results and Section VI gives
the conclusions and further investigation that is required.

II. SWITCH ARCHITECTURE

We assume an input queued switching architecture using vir-
tual output queues (VOQ). Time is slotted, and packet size is
fixed. We assume that the switch has N inputs and N out-
puts. We will represent the VOQ sizes at time � as a vector�
	

of length �� , where
��	���� ������� is the VOQ at input

�
for output � . In each time slot, at most one packet arrives at
each input. During each time slot the switching element can
transfer at most one packet from each input, and at most one
packet to each output. We will denote arrivals in time slot n
as a ��� dimensional vector � 	 . The departure matrix cho-
sen by the reduced rate scheduler for time slot � will be de-
noted as � 	 . The VOQ size evolution can then be written as:�
	���� �"!
#%$����
	 �&� 	��'�)( � 	+* � � .

We will assume that a single switching element takes , time
slots to change from one configuration to another, during which
it remains in an invalid state. We will refer to , as the deci-
sion time. Let’s consider two architectures using such optical
switches. In architecture �.- , we consider time multiplexing
between

� ,/� � � switching elements. At every time slot, ex-
actly one switching element is used to transfer packets. Each
switching element transfers packets for one slot and then re-
mains in a transient state for next , time slots before it is used
to switch packets again. Thus switching occurs every time slot.
From a scheduling algorithm’s point of view, the difference
between such an architecture and a packet switch is that the
switch schedule needs to be decided , time slots before it is
implemented. This is similar to the pipeline MWM considered
in [1]. The second switch architecture, �.-�- , uses two switch-
ing elements. When one switching element is in transient, the
other is used to transfer packets for , time slots in one fixed
configuration. We will refer to this time interval as the burst
time. The two switching elements change roles every , time
slots. This is a more general case of burst scheduling in [1].
From the schedulers point of view, the switch schedule needs
to be decided , time slots ahead, and only one scheduling de-
cision can be made every , time slots. It should be noted
that �0- and �.-�- represent two extreme points in a general-
ized switching architecture using slow switching elements. A
generalized architecture would use

� ,/�"12�43�1 switching ele-
ments with each elements being scheduled for 1 time slots at a
stretch. The next section discusses the effect of varying 1 , and
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Fig. 1. Delay in reduced rate switches
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Fig. 2. Effect of speedup in reduced rate switches

the study will provide insight into ways to reduce the delay
caused by reduced rate switching.

III. DELAY CHARACTERIZATION

Using a larger number of switching elements, each with a
shorter burst length 1 , will decrease the delay in the switch at
the cost of complexity and power. We would like to know what
value of the burst length we should use. We simulated a 6X6
switch with uniform arrivals. Figure 1 shows the average queue
length for several values of the burst length 1 . Simulations
for other traffic patterns show similar behavior. By decreasing1 , the average queue length decreases, but asymptotically ap-
proaches a lower bound. We hypothesize that the delay can be
broken into two dominating components, the burst time delay,
and the decision time delay. We derived an analytical bound
on the average delay in the Appendix using the method in [2].
However since it is only a bound it does not give an actual
variation of the delay with the burst and decision times. We
provide some intuition using simulations.

In architecture �.-�- (e.g. when 1 � �
), the increase in the

average delay is purely due to the decision time , . At time
slot

�
, a set of N VOQ’s are scheduled to be served at

� � , .
It should be noted that the delay in this architecture is not a

    n n+1 n+2 n+3

Switch 1 Switch 2 Switch 1 Switch 2

decide schedule

here
for burst (n+1)

Fig. 3. Two Switch Architecture

true pipeline delay, since the set of VOQ’s sitting in the buffer
to be served at

� � , may get service between time slots
�

to
� � , ( �

. Nevertheless, there will be a large number of
times when set of VOQ’s are not served between time slots

�
to� �&, ( �

, then the set will be effectively sitting in a pipeline
buffer of length , . Therefore, we expect a extra delay on the
order of , time slots for burst length 1 � � .

In architecture �0- (e.g. when 1 � , ), the decision time
pseudo-pipeline delay is still present. In addition, decision is
only made once every 1 time slots. Arrivals between decisions
will not effect the scheduling decision for

�
� time slots on aver-

age. Therefore, we expect a extra delay on the order of
�
� time

slots. This argument is supported by the the simulation curve
for , � � * 1 ����� , also shown on Figure 1.

Figure 2 provides some more justification for our intuitive
reasoning. We let , �����

and 1 �����
, but we let the switch

transfer packets 32 times faster than before. Most of the times,
the high speedup will just let the switching element empty the
N VOQ’s it is serving in one time slot. But, Figure 2 shows that
this does not significantly reduce the delay. This confirms our
intuitive reasoning, since speedup does not change the fact that
it takes , time slots for the right set of VOQ’s to be served,
and the fact that arrivals do not affect scheduling decisions for�
� time slots.

By increasing the number of switching elements, the burst
length can be decreased, and the delay improves. But the sys-
tem complexity increases. Since our intuition suggests that the
burst time delay and decision time delay are comparable, we
will avoid using a large number of switching elements. In-
stead we aim to reduce the decision time delay rather than the
burst time delay. Indeed, if we can predict what the VOQ sizes
will be at time

� � , , then the delay due to decision time will
be eliminated. The next section discusses how this could be
achieved using prediction of VOQs.

IV. PREDICTION SCHEME

In this section we describe a scheme for adaptive prediction
of VOQ lengths for Architecture II (which uses 2 switches op-
erating in parallel). As shown in Figure 3, the schedule for
burst (n+1) needs to be decided at the beginning of burst n.
One possible way to schedule for burst (n+1) is to do MWM
on VOQs at the beginning of burst n. However as we saw in
the previous section if we could estimate the VOQs at the be-
ginning of burst (n+1), we can reduce the delay significantly
(MWM curve in Figure 2). The only missing information that
we need to do this is the number of arrivals during burst n. If
we can predict the number of arrivals during burst n, we can
estimate the VOQs at the beginning of burst (n+1) as follows:

�
	����� � �
� � � ��� � � � ��� � 	����� � �
� � � ( � � � ���
�

(1)
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Fig. 4. Prediction Method

We study the application of an adaptive linear combiner to
predict the arrivals during burst (n+1) using the history of ar-
rivals till burst (n). Consider a linear combiner with

�
coeffi-

cients. The prediction is done using the following equation:

���� � � ��� � �� 	 
���
	 � � � ��� � ( � � (2)

where  � � � � *  � � � � *������ *  � � � � represent the filter coefficients
at time � . ��� � � represents the number of arrivals to a given
VOQ during burst � (we drop the subscript

� * � for brevity), and���� � � ��� is the predicted number of arrivals during burst (n+1).
The reason we use time varying weights is that we cannot know
the statistics of the arrival process before-hand; and also the
statistics are likely to change over time.

The adaptation of weights is shown in Figure 4. Let � � � � ��  � � � � *  � � � � *������ *  � � � ��� be the weight vector during burst �
and � � � � � � ��� � ( ��� * ��� � ( ��� *������4* ��� � ( � ��� be the input vector
to the top filter in Figure 4 at the beginning of burst

� � � � � .
For adaptation we predict ��� � � using arrivals till burst

� � ( � � ,
i.e. ���� � � � ��� � � � � � � �
Since we know ��� � � , the error signal is given by��� � � � ��� � � ( ���� � �
Using this error signal we adapt the weights according to the
LMS algorithm [3]

� � ��� ��� � � � � � � ��� ��� � � � � � � (3)

A. Rate of Adaptation and Convergence

The time constant of adaptation of the LMS algorithm is in-
versely proportional to

�
(Chapter 6 of [3]). However the al-

gorithm does not converge for an arbitrarily large value of
�

.
Convergence is guaranteed if [3]

��� �
� � � � ��� � � � � � � � (4)

An upper bound for � � � � � � � � can be obtained by using the
actual maximum packet rate for the particular VOQ.
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Fig. 5. Average Queue length as a function of load for an AR(1) process

B.
� � ���

Throughput for Bernoulli IID traffic
For a stationary arrival process the LMS algorithm con-

verges to the optimal Weiner solution if
�

satisfies condi-
tion(4). Let � � be the weight obtained by the prediction
scheme and �"! be the weight obtained by MWM. Since the
weight vector converges, we can write �#! ( ��� �"$ for a
constant

$
. Then as shown in [1] the algorithm will give

����� �
throughput for Bernoulli IID traffic.

C. Complexity of Prediction

For each of the �� VOQs we need to do
� � � � � multiplica-

tions and
� � � � � additions. However since we can do these op-

erations in parallel for each weight, we can do the computation
in time needed for 2 multiplications and 1 addition, assuming
fully parallelized hardware.

V. SIMULATION RESULTS

Simulations were done for a 6X6 switch, for a uniform load.
The simulations were done to study the difference in the per-
formance of three schemes

1) MWM: Schedule for burst � by MWM on VOQs at be-
ginning of burst � .

2) Delayed Scheduling: Schedule for burst � by MWM on
VOQs at beginning of burst

� � ( � � .
3) Predictive Scheduling: Scheduling for burst � by

MWM on VOQs predicted at beginning of burst
� � ( � � .

Note that the MWM scheme above is a hypothetical scheme
for an optical switch as the scheduling decision needs to be
made in advance. We use this a benchmark for our prediction
scheme.

We give the simulations plots for two different correlated
arrival processes. A burst lenghts of %'& time slots was used.
We did not get much improvement for Bernoulli IID traffic (as
expected because prediction will not do well if there is no cor-
relation in the arrivals).

Figure 5 shows the performance of the three schemes for an
arrival process � � � � generated using an autoregressive process
of order 1 (AR(1)). The predictive scheme does much better
than delayed scheduling, and almost as well as MWM. Fig-
ure 6 shows a similar plot for an AR(3) process. Notice the
improvement with respect to the delayed scheduling scheme
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Fig. 6. Average Queue length as a function of load for an AR(3) process

is much more in the case of an AR(3) process (the plots for
MWM and predictive scheduling are indistinguishable at this
scale). This is because as the correlation between the arrivals
increases, the prediction becomes more accurate. Also note
that the queue sizes are higher in an AR(3) process than an
AR(1) process. This is because if there are a large number of
arrivals in a burst, it will be followed by a greater number of
more such consecutive bursts with a large number of arrivals in
the case of an AR(3) process than in an AR(2) process.

VI. CONCLUSIONS

We motivated the choice of Architecture II (which uses two
switches in parallel) through a simulation study of delay in dif-
ferent architectures. We then studied a scheduling scheme that
uses prediction to drastically reduce the delay caused by the
decision time in optical switches. We showed that if the arrival
process is stationary and correlated, prediction gives a perfor-
mance comparable to MWM.

However we did not study the performance for actual inter-
net traces due to the lack of availability of traces that give the
arrivals to different VOQs at a switch. More study with such
traces would be helpful, because the traffic at a router is ex-
pected to be non-stationary. For a non stationary arrival process
the optimal weight solution will vary with time, and hence the
adaptation needs to be quick enough to capture this variation.
At the same time the adaptation rate is limited by convergence
criteria.

APPENDIX

Intuitively, reduced rate scheduling will increase the queue-
ing delay compared to MWM scheduling. To quantify the de-
lay of reduced rate scheduling, we derive analytical bounds on
the average delay under i.i.d. arrivals. The derivation uses drift
analysis method first applied to IQ switches by Leonardi et. al.
[2] Let

�
��� 	 � be a polynomial function of
� 	

. It was shown
that for large values of

��	
, if
��� �
	 � has an average downward

drift as a function of � , then the average queue size is bounded.
We formalize this fact in the following theorem.

Theorem 1: Let
��� � 	 � be a polynomial function of

� 	
. If� � ��� � 	��'� ��� � 	 � �����+� 	
(5)

and �
	�� � and �� � such that:� � �
���
	 � � � (�� ���
	 ��� �
	 � � ( 	�� ��� �
	�� �� �
	���� �
	����  (6)

where � ��� � is a continuous function, then��� !	! #" � � � �$� � 	 � � �% ��� !	! #" � � � �$� � 	 � � �� ���
	 � � � (�� ���
	 �	 � � � 	 � �  �'& �$� � 	 � �  �
(7)

Proof: This is a special case of the result given in [2]. Read-
ers are refered to that paper for the proof.

McKeown et. al. [5] have shown that, for a MWM scheduler,

�)(+*+(	 � �	 �-, � �	 * (8)

where � (+*+(	
is the departure matrix given by a MWM

scheduler, , is any admissible arrival matrix (
� , �/. % � ). Since

the difference in the weight of the reduced rate scheduler and
the MWM scheduler is

$
, we have

� 	 � �	 �0, � �	 ( $ (9)

We now derive a bound on the average queue size. Let� �$� � 	 � � �1� � 	 � �
,
����� 	 � � � 	 � �	 We will first find the

value of 	 in (5)

�-2 �
	���� � �	��'� ( �
	 � �	 � �
	43�5� 2 � � 	 �&� 	���� ( � 	 � ��� 	 � � 	��'� ( � 	 � � ( � 	 � �	 � � 	43�5� 2 � � � 	��'� ( � 	 � � �	 � � � 	��'� ( � 	 � � � 	��'� ( � 	 � �6� � 	43� � ��� � � 	���� � ( � 	 � � �	 � � 2 � � 	��'� ( � 	 � � � 	��'� ( � 	 � � � �
	 3% � ��� � � 	���� � ( � 	 � � �	 �&�
(10)

where we have used the fact that there are at most � arrivals
per time slot. We make use of (9) to bound the first term in the
above expression. Let

�, �-� � � 	��'� � � � � (-�7� � � 	���� � ��. � � 	 .
Thus

�, is an admissible arrival matrix and hence,� �, � . �8�9� � � 	��'� � � . � � � (-�9� � � 	��'� � � . � � � (11)

so we have:�;:<� � � 	��'� � � �	 ( � 	 � �	>= � �% �@?�� � � 	��'� � � �	 ( � �, � �	 ( $ �BA
� �% ( � : � � (-�9� � � 	��'� � �7. � � 	 � �	 ( $ = �&�
(12)

Now let
�, � �C � , where � is a vector of ones of length � � .

Clearly,
�, is an admissible arrival matrix. Applying (9) again:( �;: � � (��7� � � 	���� � ��. � � 	 � �	 ( $ = � �% ( �+D � � (-�9� � � 	��'� � � . � � �� � �
	E� � ( $ � ( $5F � �

� ( � � � (-�9� � � 	��'� � � . �
�

� �
	E� � �HG
(13)



where K is a constant. So now
� 	 � � � ��������� 	�
�����������C , �  s.t.��2 � 	��'� � �	��'� ( � 	 � �	 � � 	 3 � 	 � � 	 � �� � 	 ��� � 	 � � �  (14)

Now Theorem 1 can be applied.

��� !	! #" � � � �
	���� �
% � � !	! #" � � � � 	 � � � � � 	���� � �	��'� ( � 	 � �		 � � � 	 � �  �

� & �$� �
	�� �  �% ��� !	! #" � � � �
	���� � �
( � : � � (��7� � � 	���� � �7. � � �C � � 	 � � ( $ � ( $ =	 �
� � 	��'� ( � 	 � � � 	��'� ( � 	 � �	 � � �
	�� �  �

� & ��� � 	 � �  �% � � !	! #" �2� � � (-�9� � � 	��'� � �7. � $ � $	 �
� � � � 	���� ( � 	 � � � 	��'�)( � 	 � �	 � � � 	 � �  �
� & ��� � 	 � �  �% � � !	! #" �2� � � (-�9� � � 	��'� � �7. � $ � $ �	 �
� � � � 	���� ( � 	 � � � 	��'� ( � 	 � �	 �

(15)

where we have used the fact that
� � � � � � � ��� � �  � �� � � � � �  � and 	 � � �

��������� 	 
��� ��� � �C . Now let 	 approach
its maximum value, and we get� � !	! @" � � � �
	�� � �

% � � !	  #" � � � ��2� � (��7� � � 	��'� � ��. � � $ �� � � � 	��'� ( � 	 � � � 	��'�)( � 	 � � �	
(16)

All the terms can be easily evaluated given the traffic matrix.
Note the linear dependency on

$
.
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