
Speedup required for achieving 100% throughput with FPWWFA

Shang-Tse Chuang and Siva Gaggara

1 Abstract

High-speed switch architectures are more frequently de-
signed with single-stage non-blocking fabrics. This trend
has been fueled by the need for faster line rates which in
turn have placed a greater burden on the memory bandwidth
requirements. It has been shown that speedup can help pro-
vide throughput guarantees. In this paper, we investigate
throughput of a switch using FPWWFA, a practical maxi-
mal matching algorithm. We have observed that a speedup
of 4/3 is the minimum speedup required to achieve 100%
throughput for any non-uniform Bernoulli traffic. This re-
sult will allow switches to put less stringent requirements
on the memory.

2 Introduction

Many switch architects require a switch fabric to be capa-
ble of delivering 100% throughput for input traffic - uniform
or non-uniform, and that does not oversubscribe any input
or output. Most of the commercial switches and routers
are based on an input queued (IQ) architecture. The de-
cision to move away from output queued (OQ) architecture
is mainly due to the memory requirements needed for the
packet buffers. For an

�����
switch, an output-queued

switch requires the buffer to run at
�����

times the line-
rate, whereas, an input-queued switch requires only twice
the line-rate.

However, IQ switches which maintain a single first-
in-first-out (FIFO) queue experience head-of-line (HOL)
blocking and it is well known that this problem can limit the
switch throughput to 58.6% even for uniform Bernoulli iid
traffic[7]. It has been shown that, through the rearrangement
of queues a switch can achieve higher throughput. This
simple scheme is called virtual output queuing (VOQ) in
which each input maintains a separate queue for each out-
put. With this VOQ structure and the use of a maximum
weight matching (MWM) algorithm [1, 2, 3] we can achieve
100% throughput, even for non-uniform traffic. However,
because of high time complexity and lack of simple hard-
ware implementation, these maximum weight matching al-
gorithms are not attractive for practical purposes.

In the industry, a set of algorithms called ”Maximal
Matching Algorithms” are used. These algorithms have a

low time complexity and are easy to implement in hardware
[4, 5]. Some of these maximal matching algorithms achieve
100% throughput for uniform traffic. But they don’t pro-
vide any throughput guarantees for non-uniform traffic. By
using a moderate speedup1 of 2, it is shown [1] that any
maximal matching algorithm would deliver 100% through-
put even for non-uniform traffic. Further studies [8, 9, 10]
even show that with additional speedup, they can exactly
emulate an output-queued switch. However, many of the
results of these papers require a speedup of 2 or more.

However, from an implementation point of view, the
buffering stage is still too fast for commercial DRAM in
order to transfer packets at a speedup of 2. In fact, many
current buffer designs only allow a speedup of 1.6 for 10
Gbps line rates. Hence, it is interesting to know if there ex-
ists a practical maximal matching algorithm that can deliver
100% throughput at a speedup less than 2 for non-uniform
admissible traffic. In particular, we have analyzed an algo-
rithm called ”Fixed Priority Wrapped Wave Front Arbitra-
tion (FPWWFA)” and we have observed that the worst case
throughput delivered is bounded by 3/4 or 75%. This im-
plies that a speedup of 4/3 would be sufficient to achieve
100% throughput with this scheduling algorithm. However,
it should be noted that this algorithm is not fair across dif-
ferent inputs and hence packets arriving on different inputs
may experience different latencies.

In the next few sections, we will state our definition of
speedup and describe the algorithm in detail and show the
proof for the worst case throughput. The terminology of
friends, enemies and strangers is introduced and a formula
for calculating the exact service rate for the lowest priority
flow in a 3

�
3 switch is provided. We will also show simu-

lation results that match this formula.

3 Background

All our discussion would be based upon the switch model
shown in Figure 1. Although packets arriving to the switch
may be of variable length, we will assume that they are
treated internally as fixed length ”cells”. This is com-
mon practice in high performance switches where variable
length packets are segmented into cells as they arrive, car-

1A switch with a speedup of s can transfer upto s packets from each
input and deliver up to s packets to each output within a time slot.

1

VOQ(1,1)

VOQ(1,N)

VOQ(N,1)

VOQ(N,N)

Input 1

Input N

Output 1

Output N

Figure 1: Switch Model

ried across the switch as cells, and reassembled back into
packets before they depart. We take the arrival time be-
tween cells as the basic time unit. So, the rate of arrivals to
any queue should be interpreted as the rate of fixed length
cell arrivals. We represent the input rates using the notation����� �

, where i indicates the input and j indicates the output.
For admissible traffic, � � � ��� �	� ��

� and � � � ��� ��� ��
�� .

Referring to Figure 1 again, all input and output buffers
are assumed to have infinite capacity. Each input maintains
a separate FIFO queue for cells destined for each output.
Hence, there are N FIFO queues at each input and these are
called Virtual Output Queues (VOQs) - with the understand-
ing that ����� ��� � buffers cells at input i destined for output
j.

A scheduling algorithm selects a matching between in-
puts and outputs in such a way that each non-empty input is
matched with at most one output and, conversely, each out-
put is matched with at most one input. The matching is used
to configure the switch before cells are transferred from in-
put side to output side. In our model, the scheduler makes
one of these matchings once every time unit. So, in order to
achieve stability we limit the admissible traffic and believe
the inverse of this gives the speedup required. For example,
if a switch can only sustain a 50% combined traffic rate, this
implies a speedup of 2 is required.

Goal: Given the above switch model, determine the
maximum value of

�������
satisfying the following condi-

tions, while maintaining the switch stability. The traffic in
assumed to be bernoulli.

� � ����� � � �������

�
and � � ����� � � �������
��

For rest of the paper, we will concentrate on a specific
maximal matching algorithm called Fixed Priority Wrapped
WaveFront Arbitration (FPWWFA) explained in the next
section.

4 Algorithm

In this section we will describe the selected scheduling al-
gorithm. The crossbar arbiter is an

� � �
array of arbitra-

tion cells, with one cell per crosspoint. For simplicity we
have shown a 4

�
4 array in Figure 2. Each crosspoint in

the crossbar can be configured independently. However, as
mentioned before, a scheduling algorithm selects a match-
ing between inputs and outputs with each input matched to
atmost one output and each output is matched to atmost one
input. So, in any of the matchings only one crosspoint in a
given row or column can enabled.

For each crosspoint (
�! "�

), in addition to the request
(# ��� �) input and grant ($ ��� �) output, it has two inputs, north
� ��� �

and west (% ��� �
), and two outputs, south (& ��� �) and east

(' ��� �) as shown in Figure 3. Note that
� ��� �)(& ��*,+-� � and% ��� �.(' ��� ��*,+
��! "� , with the exception,
� +-� �/(&10 � � and% ��� + (' ��� 0
��- 2�

. The
� ��� �

signal indicates that there
are no granted requests for the cross points above 3 �- "�54 .
The % ��� �

indicates that there is no 657985:1;=<?> requests for
the crosspoints to the left. The $ output is asserted if, and
only if, the crosspoint is requested and both the

�
and the% inputs are asserted. Thus, $ ��� �@(# ��� �BA � ��� �CA % ��� �

,& ��� �B(� ��� �DA $ ��� � , and ' ��� �E(% ��� �FA $ ��� � . For the highest
priority cells, all the

�
and % inputs, are set to 1. Consider

the wrapped diagonals shown in Figure 4. The top priority
is given to the cells belonging to the first wrapped diago-
nal. The arbitration cells reach their final configuration in a
”wave front” that moves diagonally from the first wrapped
diagonal to the : th wrapped diagonal. If a cell performs its
operation in G time units, the outputs of cell (

�- "�
) are stable

in their final values after HI3J3 � �K��LNMO4QP.R
S : 4 � ��T G time
units. Hence, the FPWWFA completes the arbitration in :1G
time units.

5 Proof

Before delving in to the proof, we will introduce the notion
of enemies, friends, and strangers. Then, the proof will be

2

1,1

2,1

3,1

4,1

1,2 1,3 1,4

2,2 2,3 2,4

3,2 3,3 3,4

4,2 4,3 4,4

Figure 2: 4
�

4 cell array

N

EW

S

request

grant

Figure 3: Crosspoint inputs and outputs

split into two parts. First part will include only the enemies
and the second part will extend that to include all the cells
for a 3

�
3 switch.

5.1 Enemies, Friends and Strangers

In this section we will analyze how the service rate of a
given queue can be affected by other flows in the switch.
Consider again the arbiter array shown in Figure 4. With the
above scheduling algorithm it is clear that cells on the fourth
wrapped diagonal will have the lowest priority and thus we
will select the flow (4,1) as the victim flow. We define a
victim flow as the flow that would be the first to become
unstable. This point would allow us to calculate

� �����
. Due

to symmetry, any other flows on the same wrapped diagonal
would be equivalent.

Consider the cell (4,1) of the arbiter belonging to the
fourth wrapped diagonal. This cell will be granted only if
the cells (1,1), (2,1), (3,1), (4,2), (4,3), and (4,4) are not
granted. Hence, we call them the enemies of the flow(4,1).
Although the flows (2,4), (3,3), and (3,4) don’t affect the
flow (4,1) directly, they do improve it’s grant probability
indirectly by affecting it’s enemies, (2,1), (4,3), and (3,4).
Hence, we call them the friends of flow(4,1). The remaining
flows - (1,2), (1,3), (1,4) (2,2), (2,3), and (3,2) do not affect
the flow (4,1), neither directly nor indirectly. So, we call
them strangers. The above classification can be extended to

a N
�

N switch in a similar way.

5.2 How bad are the enemies?

Before we analyze how the service rate of the victim flow
is affected by all other flows, we would like to see how, just
the enemies affect the service rate of the victim flow. The
following is the traffic pattern that we are analyzing in this
part and we call this the L-pattern. All other flows except
the enemies of the victim flow have zero input traffic rate.

������
�

��+�� + � ����� ���� � + � ����� �
...

...
����� ...� 0 *1+�� + � ����� �	 # 0 � �
����� # 0 � 0

�
�����
�

For the above L-pattern, X’s service rate = (1-C)*(1-R)
where, C = � 0 *,+��*,+ � ��� +

and R = � 0��� � # 0�� � . So, we get the
value of

�������
for the L-pattern as 0.75, by minimizing the

following function.

� 3 � # 4 (3 ��L � 4 � 3 ��L # 4 ��� 8��D3 � # 4� ������� �O ��� # � � �
This proves that for the L-pattern, the selected algorithm

is weakly stable when
�������

= 0.75. The remaining part of
this section shows that for the L-pattern, the selected algo-
rithm is in fact strongly stable when

�������
= 0.75.

5.2.1 Is the algorithm strongly stable?

Let #����! � �#" be r.v representing whether the row queue
(combined queues from # 0 � � to # 0 � 0) at time T=t is empty
or not. Let

� �
be the r.v representing the time it takes for

the column queue (combined queues from
� +�� +

to
� 0 *1+�� +)

to get empty
� � �%$ � time, since it got empty

� �'& time,
� �(

. The arrival processes are independent (assume bernoulli)
and the algorithm takes independent decisions for row and
column queues.

Let & � represent the
� �'& inter service time for the victim

flow. We would like to show ' H & �� T �*)
��
. For the victim

flow to be serviced, both (a) column queue should be empty
and (b) row queue has no arrival. Each time (a) occurs,
effectively

	 � is decided randomly and let + 3�# � (� 4 (-, .
Then, the number of

�/.10
taken before the victim flow could

be serviced is distributed with parameter
,

. That is,
& �@(2��+ � �3�3� � ��4

, where each of
���

is i.i.d. andQ�<%5 � 3 , 4 . Also, let 6 (' H � � T .
3

1,1

2,1

3,1

4,1

1,2 1,3 1,4

2,2 2,3 2,4

3,2 3,3 3,4

4,2 4,3 4,4

1 2 3 4

1

2

3

Figure 4: Wrapped diagonals in a 4
�

4 cell array

' H &
�� T (' H ' HI3 ��+ � ����� � ��4 4 � � $ TIT

(��
� �D+ 3 ��L , 4 �

*1+ , ' H 3 ��+ � ����� � � � 4 � T
(��

� �D+ 3 ��L , 4 �
*1+ , 3��
' H � � T � 3	� � L � 4 6 � 4

�)
and the last equation is true, as long as 6 �)

, and' H � � T �)
. These conditions are true because the col-

umn queue is strongly stable. Note that ' H � � T is the second
moment of the length of column queue’s busy cycle.

5.3 Have we seen the worst case already?

Now we extend the above proof to include even the friends
and strangers. Clearly, including strangers will not affect
the final result. Regarding the friends, the question to ask is
- Are the friends really friends?.

Although we haven’t been yet able to prove this formally,
we have some simulation results which indicate that adding
friends always increases the service rate. So, we believe that
friends are indeed friends. This means that we have already
seen the worst case while dealing with just the enemies. So,
we conjecture that the maximum value of

� �����
for which

the switch remains stable is 3/4.
In the next section, we provide the intuition to generating

the service rate of the lowest priority flow in a 3
�

3 switch.

6 Throughput formula

We present a throughput formula for the flow (3,1), which
is a victim flow in a 3

�
3 switch. Here we only consider

the enemies and friends, who affect the service rate. The
following is the traffic matrix we are trying to analyze,

�
� � +�� + � �� � � + � � � �
�
 � + �
 � � �
��

�
�

Queue(3,1) can only be served when
� +-� +

,
� � � +

,
�
�� �

, and�
 �

are not served. Notice that the highest priority flows

are (1,1), (2,3) and (3,2). Since these flows will never be
queued, let us first consider how these flows can effect the
flow(3,1).

Whenever
� +�� +

or
�
�� �

arrive, we know that
�
 � +

is not
served. So only when

� +�� +
and

�
�� �
does not arrive, there is

a possibility that queue (3,1) can be served. If
� +-� +

does not
arrive and

��
 � �
does not arrive, and

� � �

arrives, we know

queue(3,1) can served. This is because
� � �

is the highest
priority and will prevent

� � � +
and

��
��

from attacking queue

(3,1).
Now, it is interesting to see how

� � � +
and

��
 �

effect

flow(3,1) when
� � �

does not arrive. The basic intuition is
that

� � � +
has a service rate of (1-

�1+-� +
)(1-

� � �

) and

��
��

has

a service rate of (1-
�
 � �

)(1-
� � �

). Thus, when
� +-� +

,
�
 � �

,
and

� � �

do not arrive, the only time queue (3,1) is served is

when both
� � � +

and
�
 �

are not served.
Based on the above discussion, the following is the ser-

vice rate formula for queue (3,1):0 < 7
� � 6�< 7985;=< (3J3 �CL ��+�� + 4 3 �CL ��
 � � 4 3 � � �
 4J4
� 3J3 ��L � +-� + 4 3 ��L �
 � � 4 3 ��L � � �
 4
� 3 ��L ����� �� +�* ����� ��� � +�* ����� ��� 4
� 3 ��L � ��� �� +�* � ��� � � � +�* � ��� � � 4 4

For a sanity check, plugging in
� � �

= 0 into the above
service rate gives (1-

�1+-� +
-
� � � +

)
�

(1-
��
�� �

-
��
 �

).
So, in order to prove that the friends only improve the

service rate, we need to show that the derivative of the ser-
vice rate w.r.t

� � �

is positive.

� � $������ � � ��� � � � �� � ����� ��� =
� ����� �!� � ����� ���� +-* ���!� �"� �$# 0

which is greater than zero since all the
�

s are between 0
and 1. This shows that friends can only help the throughput
of flow (3,1), atleast in a 3

�
3 switch.

7 Simulations

We have confirmed the throughput formula derived in
the previous section by running exhaustive simulations.
These simulations once again only considered enemies and
friends. The traffic rate for each individual flow was var-
ied by increments of 0.05 where the sum of the row/column
was less than 0.75. For all these traffic patterns, the system
was stable.

To see how friends affect the service rate, we have run a
simulation with the following traffic matrix.

4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.25

0.3

0.35

0.4

0.45

lambda
2,3

Q
3,

1 s
er

vi
ce

 r
at

e

sim
formula

Figure 5: How friends affect the service rate?

�� � � M � �� � � � � � �
� ��� � � � �
� � � �

��

The input traffic rate of
� � �

is varied from 0 to 0.65 in
increments of 0.05. Figure 5 shows how the the victim’s
service rate varies with

� � �

.

8 Conclusion and Future Work

As switches and line rates continue to get faster, finding so-
lutions that fit within the memory bandwidth requirements s
becoming increasingly difficult. We believe that achieving
100% throughput for non-uniform traffic has become the
minimum requirement for any switch. As a result, finding
the minimum speedup required to achieve 100% throughput
for switches using practical maximal matching algorithms
will be more important. These results will allow the switch
architects to make a more informed assessment of the per-
formance of their switch.

In this paper, we have shown that the L-traffic pattern
will provide throughput guarantees with a speedup of 4/3.
And through simulation, we have observed that a 3x3 switch
has the same results, even when all the flows are included.
We believe that, for a non-uniform Bernoulli traffic, a mini-
mum speedup of 4/3 is required to achieve 100% throughput
for a
� � �

switch using FPWWFA. We realize that the
selected algorithm is not fair, and studies of fair maximal
matching algorithms would be more interesting.

9 Acknowledgments

We would like to thank Devavrat Shah, Sundar Iyer, Isaac
Keslassy and Gireesh Shrimali for helping us in our project.

References

[1] J. G. Jim Dai, Balaji Prabhakar: “The throughput of data
switches with and without speedup”, Proceedings of the IEEE
INFOCOM, 2000.

[2] Nick McKeown, Venkat Anantharam, Jean Walrand:
“Achieving 100% throughput in an input-queued switch”, IN-
FOCOM ’96, pp.296-302.

[3] Nick McKeown, Adisak Mekkittikul, Venkat Anantharam,
Jean Walrand: “Achieving 100% throughput in an input-
queued switch”, IEEE Transactions on Communications, Vol.
47, No. 8, pp. 1260-1267, August 1999.

[4] Yuval Tamir, Hsin-Chou Chi: “Symmetric crossbar arbiters
for VLSI communication switches”, IEEE Transactions on
Parallel and Distributed Systems, Vol. 4, No. 1, pp. 13-27,
1993.

[5] Nick McKeown: “The iSLIP scheduling algorithm for input-
queued switches”, IEEE Transactions on Networking, Vol. 7,
No. 2, pp. 188-201, April 1999.

[6] Sundar Iyer, Ramana Rao Kompella, Nick McKeown: “De-
signing packet buffers for router line cards”, In submission to
IEEE Transactions of Networking.

[7] M. Karol, M. Hluchyj, S. Morgan: “Input versus output queu-
ing on a space-division switch”, IEEE Transaction on Com-
munications, Vol. 35, pp. 1347-1356, Dec 1987.

[8] S-T. Chuang, A. Goel,N. McKeown and B. Prabhakar:
“Matching output queuing with a combined input and output
queued switch”, IEEE Journal on Selected Areas in Commu-
nications, 17, no. 6, pp 1030-1039.

[9] P. Krishna, N.Patel, A.Charny and R. Simcoe: “On the
speedup required for work-conserving crossbar switches”,
Presented at the ����� IEEE/IFIP IWQOS ’98, May 1998.

[10] B. Prabhakar and N. McKeown: “On the speedup required
for combined input- and output-queued switching”, Automat-
ica, no. 35, v.12, pp. 1909-1920, Dec 1999.

5

