Pattern Recognition

Speech, Image, Handwriting, etc.

Wajahat Qadeer
Rebecca Schultz
Ernesto Staroswiecki
VOICE RECOGNITION

• Automatic conversion of speech into textual representation

• Preprocessing
 Partitioning and compression of speech into a stream of feature vectors

• Recognition
 Identification of words through an optimal path of a graph (most time consuming)
VOICE RECOGNITION

• Preprocessing
 • loop oriented with fixed bounds and no loop carried dependencies
 • High DLP with provision for TLP
 • Computationally intensive requiring floating point and integer operations
 • Small working set and memory footprint with regular data access patterns
 • High degree of spatial and temporal locality?
VOICE RECOGNITION

• Recognition

 • Large working set with highly irregular control and data access patterns

 • Big memory foot print during initialization requiring high bandwidth

 • Large caches and bigger block size reduce cache misses

 • Little ILP but TLP offers substantial gains

 • Algorithmic changes can exploit data locality
VOICE RECOGNITION

• Other Algorithms
 - Dynamic Time Warping, hidden Markov modeling, Neural Networks etc.

• Benchmarks
 - Common benchmarks are RASTA (pre-processing) and Sphinx (recognition)

• Scaling Trends
 - Complex search mechanisms requiring more computational resources
 - Large sets of databases requiring tremendous memory
IMAGE RECOGNITION

• Also a 3-step process:
 • Edge detection:
 Filtering
 • Image processing / Characterization
 • Matching
IMAGE RECOGNITION

- Processing / Characterization
 - We need to find image descriptors:
 Shape contexts, Fourier descriptors, etc.
 - Similar characteristics to voice recognition preprocessing except:
 - Not necessary to use floating point or excessive computation,
 - Yet more points to look at, which grow with the size of the image,
 - And although the memory access pattern is very regular, is important to remember that now we are looking at a 2D window.
IMAGE RECOGNITION

• Matching
 • Once again, similar to voice recognition, but problems really exacerbated!
 • Several algorithms: SVMs, Shortest Augmenting Path, etc
 • Remember that dictionary must be MUCH larger
 • Little ILP, some DLP, but mostly TLP
 • Topics to explore: CAMs, prefetching (but be careful!)
HANDWRITING RECOGNITION

• Special case of image recognition

• Similar algorithms for selecting descriptors and matching
 - Neural Nets, Hidden Markov Models, etc

• Matching library is small and fixed size

• Rarely done in hardware
 - Low data rate

• Scaling
 - Constant number of descriptor points irrespective of sample size
 - Limited opportunities for extensions