Security Applications

Abhyudaya Chodisetti
Paul Wang Lee
Garrett Smith
Cryptography

• Encryption
• Integrity: MAC(message authentication code)
• Digital signatures
• Authentication
• Extended applications
 – Electronic cash
 – Electronic voting
 – Secure auctions
 – Copyright protection
Major Components

• Block Ciphers
 – DES, AES
• Secure hash functions
 – SHA-1
• Public key encryption
 – RSA
DES
Chaining

• DES and AES both work on data blocks, 64 and 128 bits respectively
• Most commonly used way of encrypting longer messages is CBC (Cipher Block Chaining), due to security properties
• Introduces serial dependency, limiting parallelism
Properties of DES/AES

• Data size / access patterns
 – Relatively small lookup tables (2K for DES)
 – For encryption, data size is arbitrarily large
 – Working set is small
 • Intermediate values are only used once and then discarded

• Input data is used in a streaming pattern

• Algorithm complexity is constant w.r.t. data

• Constant workload distribution over time
Software implementations

• Ratio of arithmetic to memory operations
 – Per block # of alu/memory operations:
 520/192 for DES, 507/111 for AES
 – Ratios are 2.7 for DES, 4.56 for AES

• DES is inefficient in software due to extensive use of bit-level permutation

• AES is designed to be more amenable to software implementations
Hashing functions

• SHA-1
 – 232 memory operations
 – 2879 other operations
 – Ratio of 12 alu/mem operations

• Reasonable amount of ILP compared to block ciphers
RSA (Public Key Encryption)

- Based on properties of modular arithmetic
- Two keys: private key d, public key e
- Encryption: $C = P^e \mod M$
- Decryption: $P = C^d \mod M$
- Uses property that d and e are chosen such that $x^{de} = x \mod M$
RSA properties

- Key sizes: two 2048 bit integers
- Message size: 2048 bit integer
- Scales with $O(k^3)$ with efficient implementation (k: # key bits)
- Fast modular exponentiation required: multiplication and division
- In one software implementation, ratio of alu to memory operations is 1
Scaling trends

• Small number of very conservative standards
• Rate of change is slow (AES targeted for use during next 20 years)
 – Makes sense to embed special purpose hardware if performance is important
• Available scaling comes from:
 Number of requests per time and data size will increase
Custom hardware

• Custom ASIC’s for DES/AES
• Cryptography coprocessors
 – Includes HW implementation of DES/AES
 – Modular arithmetic modules for RSA
Conclusion

• Special purpose modules are a good idea for cryptography applications
• Major scaling direction for cryptographic applications will be independent thread level