* Polymorphic Architecture II

= PipeRench: A Reconfigurable
Architecture and Compiler

= Space-Time Scheduling of Instruction-
Level Parallelism on a Raw Machine

Joel Coburn
John Kim

i PipeRench

= Co-processor for streaming multimedia
= fine-grain polymorphic architecture (FPGA-
like)
= Interconnect network of configurable logic
and storage element
= PE (processing element) — 8bit datapath,
register file
= Stripe — row of PE’s representing a
pipestage with local interconnects

* PipeRench

= Pipelined reconfigurable architecture - Virtualize
hardware
= Compiler separated from hardware (physical stripe
vs virtual strip)
= restricts model of computation to pipelined
datapath
= Configuration information read from the on-chip
configuration store

= DIL(dataflow intermediate language) — single-
assignment language with C operators

* Piperench Results

= Limited data comparison

= raw speedup of 10x-200x possible on various kernels
(but I/O limited)

= 10x speedup on IDEA compared to general purpose
and custom hardware

i PipeRench - hardware

0.18um
49 mm?
120MHz

16 physical stripes/
128 virtual strips

i PipeRench

= Advantage
= disadvantages of FPGA
= forward compatibility
= rapid reconfiguration
= compilability
= easy of design
= Disadvantage
= Limited bandwidth between processor & main memory
= Limited application
= Attached processor

i Space-Time Scheduling

= Premise: Polymorphic architectures have
resources with non-uniform access latencies

= Instruction scheduling is a spatial and
temporal problem

= RAWCC — compiler for general-purpose
sequential programs on the RAW machine

= Exploit ILP within basic blocks through space-
time scheduling

i Basic-block Orchestration

= Transform basic block into a set of
parallel operations across RAW tiles

= Spatial scheduling: assignment of
instructions to processing units

= Temporal scheduling: instruction
scheduling on individual tiles

= Assignment of data to tiles
= Communication across a mesh interconnect

Control Orchestration

= Control flow must be communicated between
all tiles
= Asynchronous global branching
= Broadcast branch value
= Each tile and switch performs branch without
synchronization at end of its basic block
= Control localization
= Treat a branch-containing code sequence as a
single instruction
= Execute different branches concurrently on
different tiles

i Results

= Claims that RAW compiler exploits ILP (really
DLP) across tiles for all benchmarks

= Loops are unrolled enough times to distribute
across all tiles

= Small data sets to take advantage of low
communication overhead
= RAW machine tolerates dynamic events

= Dynamic event only affects the processor on
which the event occurred

i Critique

= Strengths
= Compiles general-purpose programs
written in C and FORTRAN
= Fully distributed processor provides
scalable ILP and handles control flow

* Critique (2)

= Weaknesses
= Only shown to be advantageous for
programs with ILP
= Compiler focuses on static references and
does not examine dynamic references
= Benchmarks are well suited to the RAW
architecture

i Discussion Questions

= What is architecture decoupling?

= Why keep adding registers if you add ALU's?

= What is hardware virtualization?

= How much should the compiler know about
the hardware?

= How much knowledge of the architecture
should the programmer have?

Discussion Questions

= Compare with the Smart Memories/TRIPS
architecture
= Which allow more flexibility/configurability?
= Which architecture is more power efficient?
= What should be the configuration granularity
architecture?
= Fine-grained (8-bits)
= Conventional 32 bit datapath
= Which architectures are better suited for the different
parallelism (or different applications)?
« DLP
« ILP
« TLP

