Estimation of 3-d Scene Structure and Motion

Bernd Girod
Image, Video, and Multimedia Systems Group
Information Systems Laboratory
Department of Electrical Engineering

Stanford University
Research Topics:
Image, Video, and Multimedia Systems Group

Video Coding Algorithms
- Rate-distortion optimized video compression
- Multiframe prediction
- Error-resilient video coding
- Scalable video coding

3-D Image Analysis and Synthesis
- 3-D motion estimation and structure-from-motion
- Compression of lightfields for image-based rendering
- Facial animation and expression tracking

Networked Multimedia Systems
- Internet video streaming
- Wireless video
- Voice over IP
- Digital watermarking
Research Topics:
Image, Video, and Multimedia Systems Group

Video Coding Algorithms
- Rate-distortion optimized video compression
- Multiframe prediction
- Error-resilient video coding
- Scalable video coding

3-D Image Analysis and Synthesis
- 3-D motion estimation and structure-from-motion
- Compression of lightfields for image-based rendering
- Facial animation and expression tracking

Networked Multimedia Systems
- Internet video streaming
- Wireless video
- Voice over IP
- Digital watermarking
Vision, Graphics, and Image Communication

1988
Vision, Graphics, and Image Communication
Conjecture

Interactive multimedia systems will make a great leap forward by combining 3-d computer vision and 3-d graphics.
Fundamental Problems of 3-D Image Analysis

Object or scene
3-d geometry G

View 1
R_1, T_1

View i
R_i, T_i

View N
R_N, T_N
Fundamental Problems of 3-D Image Analysis

Problem 1
“Simultaneous estimation of structure and motion”
“Structure-from-Motion”

\[G, R_i, T_i \text{ unknown} \]
Fundamental Problems of 3-D Image Analysis

Problem 1
“Simultaneous estimation of structure and motion”
“Structure-from-Motion”

\[\mathbf{G}, \mathbf{R}_i, \mathbf{T}_i \text{ unknown} \]

Problem 2
“Model-based 3-d motion estimation”
“Estimation of external camera parameters”

\[\mathbf{G} \text{ known, } \mathbf{R}_i, \mathbf{T}_i \text{ unknown} \]
Fundamental Problems of 3-D Image Analysis

Problem 1
“Simultaneous estimation of structure and motion”
“Structure-from-Motion”

\[G, R_i, T_i \text{ unknown} \]

Problem 2
“Model-based 3-d motion estimation”
“Estimation of external camera parameters”

\[G \text{ known, } R_i, T_i \text{ unknown} \]

Problem 3
“3-d reconstruction from calibrated views”

\[G \text{ unknown, } R_i, T_i \text{ known} \]
Outline of this talk

- **Fundamental problems of 3-d image analysis and synthesis**
 - Simultaneous estimation of structure and motion
 - Model-based 3-d motion estimation
 - 3-d reconstruction from calibrated views

- Recent algorithms

- Experimental results

- Application: compression of light-fields
Fundamental Problems of 3-D Image Analysis

Problem 1
“Simultaneous estimation of structure and motion”
“Structure-from-Motion”

\[G, R_i, T_i \text{ unknown} \]

Problem 2
“Model-based 3-d motion estimation”
“Estimation of external camera parameters”

\[G \text{ known, } R_i, T_i \text{ unknown} \]

Problem 3
“3-d reconstruction from calibrated views”

\[G \text{ unknown, } R_i, T_i \text{ known} \]
Perspective Projection and Epipolar Line

Point correspondences for 3-d rigid body motion must lie on a straight line
Two-Stage Method

Disadvantages
- Feature extraction / correspondences often unreliable or ambiguous
- No rigid-body-motion constraint in feature correspondence stage
Simultaneous estimation of 3-d structure and motion

Motion parameters R,T

Search area

Measurement window

Epipolar line

Iterative 5-D search

New candidates R,T

Compute MSE(dx,dy)

Min on epipolar line

+= minimum

MSE(dx,dy)

dx,dy

Motion parameters R,T

Image 1

Image 2

[Steinbach, Girod, ICASSP 1996] [Steinbach, Hanjalic, Girod, ICIP 1996]
Pre-computation of minima for all epipolar lines

Displacement space

Epipolar line

S = dx cos(α) + dy sin(α)

Line space
Example

Rigid body motion

Depth map

Image 1

Image 2
3-d mosaicing with depth-based segmentation

[Steinbach, Eisert, Girod, Signal Processing, 1998]
3-d motion-based segmentation

[Steinbach, Eisert, Girod, Signal Processing, 1998]
Fundamental Problems of 3-D Image Analysis

Problem 1
“Simultaneous estimation of structure and motion”
“Structure-from-Motion”

\(G, R_i, T_i \) unknown

Problem 2
“Model-based 3-d motion estimation”
“Estimation of external camera parameters”

\(G \) known, \(R_i, T_i \) unknown

Problem 3
“3-d reconstruction from calibrated views”

\(G \) unknown, \(R_i, T_i \) known

Object or scene
3-d geometry \(G \)
3-d motion estimation for known geometry

\[\vec{d} = f(R, T, G) \]

Displacement field between \(I_1(x, y) \) and \(I_2(x, y) \)

Linearization for small \(R, T \)

\[\vec{d} \approx f_1 \cdot r_x + f_2 \cdot r_y + f_3 \cdot r_z + f_4 \cdot t_x + f_5 \cdot t_y + f_6 \cdot t_z \]

Spatially varying “basis functions”

Assume same brightness of corresponding points

“Optical flow constraint”

\[\frac{1}{2} \vec{d}^T \cdot \begin{pmatrix} \frac{\partial I_1}{\partial x} + \frac{\partial I_2}{\partial x} \\ \frac{\partial I_1}{\partial y} + \frac{\partial I_2}{\partial y} \end{pmatrix} \approx I_1 - I_2 \]

- Solve by linear regression
- Apply iteratively in a resolution pyramid
Extension to flexible bodies

\[\vec{d} = f(R, T, G(\bar{p})) \]

Parametric geometry

Linearization for small \(R, T, p \)

\[\vec{d} \approx f_1 \cdot r_x + f_2 \cdot r_y + f_3 \cdot r_z + f_4 \cdot t_x + f_5 \cdot t_y + f_6 \cdot t_z + f_7 \cdot p_1 + f_8 \cdot p_2 + \cdots \]

Spatially varying “basis functions”

Assume same brightness of corresponding points

“Optical flow constraint”

\[\frac{1}{2} \vec{d}^T \cdot \begin{pmatrix} \frac{\partial I_1}{\partial x} + \frac{\partial I_2}{\partial x} \\ \frac{\partial I_1}{\partial y} + \frac{\partial I_2}{\partial y} \end{pmatrix} \approx I_1 - I_2 \]

- Solve by linear regression
- Apply iteratively in a resolution pyramid

[Eisert, Girod, ICIP 1997] [Eisert, Girod, IEEE CGA, 1998]
Modeling of Facial Expressions

- Head geometry composed of 101 triangular B-spline patches
- Facial expressions by superposition of 66 FAPs (Facial Animation Parameters) according to MPEG-4 standard
- FAPs act on control points of triangular B-spline patches
Model-based videophone

Diagram:
- **Video** → **Coder** → **Channel** (about 1 kbit/s) → **Decoder** → **Video**
- **Coder**:
 - Analysis: Estimation of FAPs
 - Parameter entropy coding
- **Decoder**:
 - Synthesis: Animation and rendering of the head model
 - Parameter decoding
- **Channel**:
 - Head Model:
 - Shape
 - Texture
 - Illumination
 - Dynamics
Results: Peter

Sequence: Peter, 230 frames, CIF resolution, 25 fps

Original

Synthesized

1.2 kbps - 32.8 dB PSNR
Results: Eckehard

Original

Synthesized

Sequence: Eckehard
CIF resolution, 25 fps

1.1 kbps, 32.6 dB PSNR
Results: Michelle

Original

Synthesized
Results: Peter as Eckehard

Sequence: Peter, 230 frames, CIF resolution, 25 fps
Results: Eckehard as Peter

Original

Synthesized

Sequence: Eckehard
CIF resolution, 25 fps
Results: Peter as Akiyo

Sequence: Peter, 230 frames, CIF resolution, 25 fps
Results: Peter as Michelle

Original

Synthesized

Sequence: Peter, 230 frames, CIF resolution, 25 fps
Problem 1
“Simultaneous estimation of structure and motion”
“Structure-from-Motion”

\[G, R_i, T_i \text{ unknown} \]

Problem 2
“Model-based 3-d motion estimation”
“Estimation of external camera parameters”

\[G \text{ known, } R_i, T_i \text{ unknown} \]

Problem 3
“3-d reconstruction from calibrated views”

\[G \text{ unknown, } R_i, T_i \text{ known} \]
3-D reconstruction from calibrated views: state-of-the-art

● Stereo Methods
 – Depth maps for image pairs \((2^{1/2}-d)\)
 – Occlusion problem
 – Extension to > 2 views??
 – Good: textured surfaces, parallel to image plane
 – Bad: Depth discontinuities, object silhouette

● Silhouette Methods
 – Backprojection of object silhouettes from many views into 3-space
 – Intersection of backprojected silhouette cones: “Visual hull” approximates object surface
 – Texture not exploited
Geometry Reconstruction from Many Views

Volumetric Reconstruction

- Subdivide object’s bounding box into voxels
- Generation of multiple hypotheses for each voxel
- Hypothesis elimination by projecting visible voxels into all views
- Iterate over all voxels until remaining hypotheses are “photo-consistent”

- processes all views simultaneously
- exploits texture and silhouette information
- yields solid 3-D voxel model

[Eisert, Steinbach, Girod, ICASSP 99]
[Steinbach, Girod, Eisert, Betz, ICIP 2000]
Example

- 11 calibrated views, 352x288 pixels each
- Voxel array: 240 x 240 x 140
- 3.6×10^7 hypotheses generated
- Consistency test: 15 iterations through volume
- Result: 6.8×10^4 visible voxel
Original and Reconstructed Views

Original

Reconstructed for same pose
Interpolated Views

Reconstructed view, not contained in original data set

Original

Detail

Reconstructed

[Images of a mug and a detailed comparison of original and reconstructed views]
3-D Reconstruction from Many Calibrated Views

Sequence of original camera frames: 15 degree increments

rendered depth maps for the same viewing positions
Problem 1 Revisited: Many Views

Problem 1
“Simultaneous estimation of structure and motion”
“Structure-from-Motion”

\[\mathbf{G}, \mathbf{R}_i, \mathbf{T}_i \text{unknown} \]

Problem 2
“Model-based 3-d motion estimation”
“Estimation of external camera parameters”

\[\mathbf{G} \text{ known, } \mathbf{R}_i, \mathbf{T}_i \text{unknown} \]

Problem 3
“3-d reconstruction from calibrated views”

\[\mathbf{G} \text{ unknown, } \mathbf{R}_i, \mathbf{T}_i \text{known} \]
View Calibration Using Silhouettes

- Exploit mutual consistency in pairs of views

[Ramanathan, Steinbach, Girod, VMV 2000]
Error Measure

- Incorrect calibration parameters lead to difference between tangent and projected 2-D cone

$$\varepsilon_{ij} = \eta_1 + \eta_2$$

$$E = \sum_{i=1}^{N} \sum_{j=1}^{N} \varepsilon_{ij} \rightarrow \text{min.}$$
Experimental Results

- 32 views from a light-field
- Constrained turntable arrangement
- Translation parameter perturbed
- Projected silhouette of the reconstructed object shown for different stages of the algorithm

Original uncalibrated parameters

3 iterations

7 iterations

Final reconstruction
Image-based Rendering Using Light-Fields

Airplane Light-Field
8 × 8 images, 256 × 256 pixels
12.6 MByte
Spherical Recording Geometry

- Calibrated computer-controlled camera mount & turn-table
- 3 test light fields consisting of 32 x 8 calibrated images
Surface Representation

- Initial octahedral geometry
- Geometry refinement
 - determine vertex normals
 - move vertices to model surface
 - subdivide triangles
- Encode with Embedded Mesh Coder \([\text{Magnor, Girod, VMV’99}]\)

voxel model 128 triangles 512 triangles 2048 triangles 8192 triangles
View-dependent texture-map coder

- Warp each image into a texture map
- Arrange texture maps in a 2-d array
- 4-d Haar wavelet decomposition of texture maps
- Quantization and encoding of wavelet coefficients using a 4-d extension of the Set Partioning in Hierarchical Trees (SPIHT) algorithm
Results: Model-based Coder

Reconstruction quality in *luminance PSNR* (dB)
Conclusions

- Recent algorithms to recover 3-d motion and/or geometry
 - New direct method for structure-from-motion overcomes limitations of two-stage approach
 - Robust model-based motion estimator, extended to non-rigid motion
 - Example: facial expression tracking, videophone at 1 kbps
 - Volumetric reconstruction method processing many views simultaneously

- Application example: light-field compression
 - View-dependent texture mapping, 4-d embedded wavelet coder
 - Compression ratios 100...1000:1

Vision, graphics, and image communication are converging!