EE392m
Fault Diagnostics Systems
Introduction

Dimitry Gorinevsky
Consulting Professor
Information Systems Laboratory
Course Subject

• Engineering of fault diagnostics systems
• Embedded computer interacting with real world
 – Detect abnormal operation
 – Fault tolerance: more than 80% of critical control code
• Operations and maintenance
 – More than 50% of the system lifetime costs
 – Troubleshooting support
 – Condition-based maintenance – CBM
Prerequisites and Course Place

• The subject is not covered in other courses
• Prerequisites (helpful but not necessary)
 – Stat 116; EE263 or Eng 207a; EE278 or Eng 207b
• The course is about technical approaches that are actually used in fault diagnostics applications
 – Survived demands of real life
 – Used and supported by BS-level engineers in industry
 – Should be accessible to a Stanford grad student
Course Mechanics

• Class website: www.stanford.edu/class/ee392M/
• Weekly seminars
 – Follow website announcements
• Guest lecturers from diverse industries
 – Co-sponsored by NASA
 • Travel support for lecturers
 – Lecture notes will be posted as available
• Attendance
• Reference texts
 – Isermann; Chiang, Russel, & Braatz; Patton, Clark & Frank
 – Different coverage
 – Contact me if you have a specific interest
On-line (Embedded) Functions

• Embedded system, anomaly warnings
 – BIT – Built-in-Test
 – BITE – Built-in-Test Equipment
• FDIR
 – Fault Detection Identification and Recovery
• FT-RM
 – Fault Tolerance and Redundancy Management
Off-line Functions

• Reliability
 – FMECA- Failure Mode, Effects, and Criticality Analysis
 – Design time analysis – open loop

• Maintenance and Support
 – Diagnostics for maintenance
 – Troubleshooting support
 – Test equipment
 – CBM – Condition Based Maintenance
 – Pre-testing – disk drives
Fault Diagnostics in Industry

- Space systems
- Defense systems: aviation, marine, and ground
- Commercial aerospace
 - Aircraft, jet engines
- Ground vehicles
 - Locomotives, trucks, cars
- High-tech
 - Networks and IT systems
 - Disk drives
 - Server farms
- Process control
 - IC Manufacturing
 - Refineries
 - Power plants
- Oil and gas drilling
Guest Lecture Overview

<table>
<thead>
<tr>
<th>#</th>
<th>Date</th>
<th>Lector</th>
<th>From</th>
<th>Diagnostics Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>31-Mar-09</td>
<td>Gorinevsky</td>
<td>Stanford</td>
<td>Introduction and overview</td>
</tr>
<tr>
<td>2</td>
<td>7-Apr-09</td>
<td>Rabover</td>
<td>VMTurbo (EMC)</td>
<td>Networks and IT systems</td>
</tr>
<tr>
<td>3</td>
<td>14-Apr-09</td>
<td>Tuv</td>
<td>Intel</td>
<td>IC Manufacturing processes</td>
</tr>
<tr>
<td>4</td>
<td>21-Apr-09</td>
<td>Felke</td>
<td>Honeywell</td>
<td>Avionics of commercial aircraft</td>
</tr>
<tr>
<td>5</td>
<td>28-Apr-09</td>
<td>Adibhatla</td>
<td>GE Infrastructure</td>
<td>Jet engines</td>
</tr>
<tr>
<td>6</td>
<td>5-May-09</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>12-May-09</td>
<td>Urmanov</td>
<td>Sun</td>
<td>Computing systems</td>
</tr>
<tr>
<td>8</td>
<td>19-May-09</td>
<td>Bodden</td>
<td>Lockheed</td>
<td>Military aircraft systems</td>
</tr>
<tr>
<td>9</td>
<td>26-May-09</td>
<td>Kolmanovsky</td>
<td>Ford</td>
<td>Automotive powertrain</td>
</tr>
<tr>
<td>10</td>
<td>2-Jun-09</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Diagnostics Methods Overview

• **Shewhart chart (Control chart)**
• Multivariable SPC, T^2
• Model-based estimation
 – Least squares estimation
• Integrated diagnostics
 – Cascaded design
Abnormality Detection - SPC

• SPC - Statistical Process Control
 – monitoring of manufacturing processes
 – warning for off-target quality

• Main SPC method
 – Shewhart Chart (1920s)

• Also see
 – EWMA (1940s)
 – CuSum (1950s)
 – Western Electric Rules (1950s)
SPC: Shewhart Control Chart

- W. Shewhart, Bell Labs, 1924
- Statistical Process Control (SPC)
- UCL = mean + 3·σ
- LCL = mean - 3·σ

Walter Shewhart (1891-1967)
Shewhart Chart, cont’d

- Quality variable assumed randomly changing around a steady state value
- Detection: $y(t) > UCL = \text{mean} + 3\cdot\sigma$
- For normal distribution, false alarm probability is less than 0.27%

$$e(t) = \frac{y(t) - \mu_0}{\sigma}$$

$$P(e > 3) = 1 - \Phi(3) = 0.1350 \cdot 10^{-2}$$

$$P(e < 3) = \Phi(-3) = 0.1350 \cdot 10^{-2}$$
Shewhart Chart – Hypothesis Test

• Null hypothesis
 – given mean and covariance

\[H_0 : y(t) \sim N(\mu_0, \sigma^2) \quad P(H_0) = p_0 \]

• Fault hypothesis
 – a different mean

\[H_1 : y(t) \sim N(\mu_1 \neq \mu_0, \sigma^2) \quad P(H_1) = p_1 \]

• Hypothesis testing

\[
\text{given } Y = y(t) \\
\text{find } X \in \{H_0, H_1\}
\]
Bayesian Formulation

- Data: Y - Observation, X - Underlying State

- Bayes rule

$$P(X \mid Y) = P(Y \mid X) \cdot P(X) \cdot c$$

- Observation model: $P(Y \mid X)$
- Prior model: $P(X)$
- Maximum A posteriori Probability estimate

$$X = \arg \min \left(-\log P(Y \mid X) - \log P(X) \right)$$

L - log-posterior index
Hypothesis Testing

- Null hypothesis
 \[- \log P(Y \mid X) = \frac{1}{2\sigma^2} (y - \mu_0)^2 \quad \text{and} \quad - \log P(X) = - \log p_0\]

- Fault hypothesis
 \[- \log P(Y \mid X) = \frac{1}{2\sigma^2} (y - \mu_1)^2 = 0 \quad \text{and} \quad - \log P(X) = - \log p_1 \quad p_0 = 1 - p_1\]

- Log-likelihood ratio
 \[\Lambda = \log \frac{P(H_1 \mid Y)}{P(H_0 \mid Y)} = L_0 - L_1\]

- Declare fault if
 \[\Lambda = L_0 - L_1 = \frac{1}{2\sigma^2} (y - \mu_0)^2 - \log(p_0/p_1) > 0\]

\[|y - \mu_0| > \sigma \sqrt{2 \log(1 - p_1)/p_1} \quad p_1 = 0.0113 \Rightarrow 3\sigma\]
Shewhart Chart: Use Examples

- SPC in manufacturing
- Fault monitoring
- Fault tolerance – sensor integrity monitoring

\[|\Delta y| < 3\sigma \]

Sensor \[\rightarrow \] Reference \[+ \] \[- \] \[\rightarrow \] \[|\Delta y| < 3\sigma \] \[no \rightarrow \] Fault \[yes \rightarrow \] Normal
Diagnostics Methods Overview

- Shewhart chart (Control chart)
- **Multivariable SPC, T^2**
- Model-based estimation
 - Least squares estimation
- Integrated diagnostics
 - Cascaded design
Multivariable SPC

- Univariate process

\[z^2 = \left(\frac{y - \mu_0}{\sigma} \right)^2 \sim \chi^2 \]

\[P\left(z^2 > c^2\right) = 1 - F(c^2, 1) = \Phi(-c) + 1 - \Phi(c) \]

- Two independent univariate processes

\[z^2 = \left(\frac{y_1 - \mu_1}{\sigma_1} \right)^2 + \left(\frac{y_2 - \mu_2}{\sigma_2} \right)^2 \sim \chi^2 \]

\[P\left(z^2 > c^2\right) = 1 - F(c^2; 2) \]
Multivariable SPC

- Two correlated univariate processes $y_1(t)$ and $y_2(t)$
 \[\text{cov}(y_1, y_2) = Q, \quad Q^{-1} = L^T L \]
- Uncorrelated linear combinations
 \[z(t) = L \cdot [y(t) - \mu] \]
 \[\|z\|^2 = (y - \mu)^T Q^{-1} (y - \mu) \sim \chi^2_2 \]
- Declare fault (anomaly) if
 \[(y - \mu)^T Q^{-1} (y - \mu) > c^2 \]
 \[P(z^2 > c^2) = 1 - F(c^2;2) \]
Multivariate SPC - Hotelling's T^2

• Empirical parameter estimates

$$\hat{\mu} = \frac{1}{n} \sum_{t=1}^{n} y(t) \approx E(X)$$

$$\hat{Q} = \frac{1}{n} \sum_{t=1}^{n} (y(t) - \mu)(y^T(t) - \mu^T) \approx \text{cov}(y - \mu)$$

• Hotelling's T^2 statistics is

$$T^2 = (y(t) - \mu)^T \hat{Q}^{-1} (y(t) - \mu)$$

• T^2 can be trended as a univariate SPC variable

Harold Hotelling
(1895-1973)
Diagnostics Methods Overview

- Shewhart chart (Control chart)
- Multivariable SPC, T^2
- **Model-based estimation**
 - Least squares estimation
- Integrated diagnostics
 - Cascaded design
Least Squares Estimation

- Linear observation model:
 \[Y = CX + v \]

- Fault signature model
 - Columns of \(C \) are fault signatures
 - Could be obtained from physics model
 - secant method
 - Could be identified from data:
 - regression, data mining

- Estimate
 - regularized least squares
 \[\hat{X} = \left(C^T C + rI \right)^{-1} C^T Y \]
Bayesian Estimation

- Observation model: $P(Y|X)$
 \[Y = CX + \nu \quad \nu \sim N(0, Q) \]
- Prior models: $P(X)$
 \[X \sim N(0, R) \quad -\log P(X) = \frac{1}{2} X^T R^{-1} X + ... \]
- MAP estimate:
 \[
 \hat{X} = \arg \min \underbrace{\frac{1}{2} \|Y - CX\|_Q^{-1}^2}_{-\log P(Y|X)} + \underbrace{\frac{1}{2} \|X\|_R^{-1}^2}_{-\log P(X)}
 \]
 \[
 \hat{X} = \left(C^T Q^{-1} C + R^{-1}\right)^{-1} Q^{-1} C^T Y
 \]
Model-based Residuals

- Compute model-based prediction residual
 \[Y = Y_{raw} - f(U,X) \]
- If \(X = 0 \) (nominal case) we should have \(Y = 0 \).
- Residuals \(Y \) reflect faults
 - Sensor fault model - additive output change
 - Actuator fault model - additive input change
Example: Jet Engine Model

- Nonlinear jet engine model
 - static map

- Residuals
 \[Y = Y_{raw} - f(U, X) \]

- Linearized model
 \[Y = CX + \nu \]
 \[C = -\frac{\partial f(U, X)}{\partial X} \]
 \[X = \begin{bmatrix}
 \text{Turbine deterioration} \\
 \text{Bleed band leak} \\
 \text{EGT sensor drift}
\end{bmatrix} \]
Example: Fault Estimates

- Maintenance decision support tool

Honeywell LF507 Engine Fleet

Estimates of (fault) performance parameter deterioration

Ganguli, Deo, & Gorinevsky, IEEE CCA’04
Diagnostics Methods Overview

• Shewhart chart (Control chart)
• Multivariable SPC, T^2
• Model-based estimation
 – Least squares estimation
• **Integrated diagnostics**
 – Cascaded design
Cascaded Design

- Increasing complexity and integration of system \uparrow
- Slower time scale \uparrow
- Simple inner loop models
- Examples
 - Control systems
 - Estimation and data fusion
 - Fault diagnostics systems
Integrated System Diagnostics

• Complex integrated systems
• Examples
 – Aerospace vehicle, e.g. B777
 – Large scale computer network
 – Medical equipment

Decision Support Interface

Integrated Diagnostic System

Subsystem 1 Diagnostics

Subsystem 2 Diagnostics

... Subsystem \(n \) Diagnostics
Discrete Fault Signatures

Model of root cause fault k:

$$Y^k = B^k$$

<table>
<thead>
<tr>
<th>Root Cause \rightarrow</th>
<th>#0 Null</th>
<th>#1</th>
<th>#2</th>
<th>#3</th>
<th>#4</th>
<th>#5</th>
<th>#6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symptom Code</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>#2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>#3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>#4</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>#5</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>#6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>#7</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Estimation Algorithm

• Diagnosis problem:
 Given data Y, diagnose root cause k
• Solution:

$$k = \arg \min_k \| Y - B^k \|_1$$

• Minimal Hamming distance
• Justifications
 – Case-based reasoning (table of fault cases)
 – Model-based reasoning (fault signature model)
 – Bayesian
Bayesian Justification

- Data
 \[Y \quad X = \{ H_0 : 0, \quad H_1 : B^1, \quad \ldots, \quad H_n : B^n \} \]

- Observation model
 \[
 P(Y \mid X) = \begin{cases}
 P(y_j = b_j^k \mid H_k) = 1 - p_1 & y_j \text{ follows the model} \\
 P(y_j \neq b_j^k \mid H_k) = p_1 & \text{deviates from the model}
 \end{cases}
 \]

 \[-\log P(Y \mid H_k) = \sum_{y_j = b_j^k} -\log(1 - p_1) + \sum_{y_j \neq b_j^k} -\log p_1 =
 \]

 \[-n \cdot \log(1 - p_1) - \sum_{j=0}^{n} |y_j - b_j^k| \cdot \left(\log p_1 - \log(1 - p_1) \right) > 0, \text{ for } p_1 < 1/2 \]

 \[-\log P(Y \mid H_k) = c + w\|y - b^k\|_1 \]
Bayesian Justification

- Prior model
 \[P(X) \quad P(H_k) = \frac{1}{n + 1} \]
 \[- \log P(H_k) = d \]

- MAP Estimate
 \[k = \arg \min_k (- \log P(Y | H_k) - \log P(H_k)) \]
 \[k = \arg \min_k \left(c + w \| y - b^k \|_1 + d \right) \]
 \[k = \arg \min_k \| y - b^k \|_1 \]
Conclusions

• Basic diagnostics estimation methods
 – Are known for long time
 – Used in on-line systems for less time
 – Can be explained in several ways, e.g., Bayesian

• Engineering of fault diagnostics systems
 – Is new and current
 – Will be discussed in guest lectures
 – Not just diagnostics algorithms
Guest Lectures: Approaches

<table>
<thead>
<tr>
<th>#</th>
<th>Date</th>
<th>Lector</th>
<th>From</th>
<th>Application</th>
<th>Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>7-Apr-09</td>
<td>Rabover</td>
<td>EMC</td>
<td>Network</td>
<td>Integrated diagnostics</td>
</tr>
<tr>
<td>3</td>
<td>14-Apr-09</td>
<td>Tuv</td>
<td>Intel</td>
<td>IC Manufacture</td>
<td>Fault signature ID</td>
</tr>
<tr>
<td>4</td>
<td>21-Apr-09</td>
<td>Felke</td>
<td>Honeywell</td>
<td>Aircraft</td>
<td>Integrated diagnostics</td>
</tr>
<tr>
<td>5</td>
<td>28-Apr-09</td>
<td>Adibhatla</td>
<td>GE Infra</td>
<td>Jet Engines</td>
<td>Multivariate estimation</td>
</tr>
<tr>
<td>7</td>
<td>12-May-09</td>
<td>Urmanov</td>
<td>Sun</td>
<td>Computing</td>
<td>Multivariate SPC, ML</td>
</tr>
<tr>
<td>8</td>
<td>19-May-09</td>
<td>Bodden</td>
<td>Lockheed</td>
<td>Aircraft</td>
<td>Fault tolerance</td>
</tr>
<tr>
<td>9</td>
<td>26-May-09</td>
<td>Kolmanovsky</td>
<td>Ford</td>
<td>Automotive</td>
<td>Model-based</td>
</tr>
</tbody>
</table>