
Content-Based Indexing for Search and Browsing 
Storage and archiving of digital video in shared disks and 
servers in large volumes, browsing of such databases in 
real-time, and retrieval over switched and packet net- 
works pose many new challenges, one ofwhich is efficient 
and effective description of content. The simplest method 
to index content is by means of a thesaurus of keywords, 
which can be assigned manually or semiautomatically to 
progranis, shots, or visual objects [232]. It is also desir- 
able to supplement these lieywords with visual features 
describing appearance (color, texture, and shape) and ac- 
tion (object and camera motion), as well as sound (audio 
and speech) and textual (script and close-caption) fea- 
tures [227,233]. Furthermore, it is of interest to browse 
and search for content using compressed data since al- 
most all video data will likely be stored in compressed for- 
mat [234]. 

Video-indexing systems may employ a frame-based, 
scene-based, or object-based video representation [235]. 
The basic components of a video-indexing system are 
temporal segmentation, analysis of indexing features, and 
visual summarization. The temporal segmentation step 
extracts shots, scenes, and/or video objects. The analysis 
step computes content-based indexing features for the ex- 
tracted shots, scenes, or objects. Content-based features 
may be generic or domain-dependent. Commonly used 
generic indexing features include color histograms, type 
of camera motion [236], direction and magnitude of 
dominant object motion, entry and exit instances of ob- 
jects of interest [237], and shape features for objects. 
Domain-dependent feature extraction requires a priori 
knowledge about the video source, such as news pro- 
grams, particular sitcoms, sportscasts, and particular 
movies. Content-based browsing can be facilitated by a 
visual summary of the contents of a program, much like a 
visual table of contents. Among the proposed visual sum- 
marization methods are story boards, visual posters, and 
mosaic-based summaries. With the upcoming MPEG-7 
standardization effort on content-based video descrip- 
tion, this subject is sure to remain an active research topic 
in the near future. 
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Due to the vast amount of data associated with images 
and video, compression is a key technology for their digi- 
tal transmission and storage. The availability and demand 
for images and video continue to outpace increases in net- 
work capacity. Hence, the importance of compression is 
not likely to diminish, in spite of the promises of unlim- 
ited bandwidth. 

Compression takes advantage of the structure of im- 
ages and video, especially of the statistical redundancy in- 
herent in such signals. It can also exploit the limitations of 
human visual perception to omit components of the sig- 
nal that will not be noticed. 

A typical compression system has several stages as de- 
picted in Fig. 8. The analog-to-digital converter samples 
and finely quantizes an image, producing a digital repre- 
sentation. A signal decomposition uses linear transforms 
or filter banks to break the signal into parallel channels of 
separate images (bands or groups of coefficients). Such 
decompositions serve to compact the energy into a few 
coefficients, to decorrelate separate subbands or groups 
of coefficients, and to convert the images into a form 
where perceptual processing is naturally incorporated. 
Most ofthe compression occurs in the quantization stage, 
which operates in the transform domain on individual 
pixels (scalar quantization) or on groups of pixels (vector 
quantization). Lossless compression (entropy coding) 
typically involves run-length coding combined with 
Huffman or arithmetic codes to further save bits in an in- 
vertible fashion. Occasionally specific components will be 
combined or omitted, but most current image-coding 
standards possess all of the components in some form. 

The enormous commercial potential of image and 
video coding has stimulated rapid growth of the research 
efforts to find improved or entirely new techniques. In 
this short survey we do not attempt a comprehensive 
overview; rather we selectively summarize some of the 
most common themes and principles ofthis exciting field. 
We start by reviewing source-coding principles, which 
are not specific to image coding, but are fundamentally 
important nevertheless. We then discuss subband and 
transform coding, move on to predictive coding, motion 
compensation and rate-distortion methods in compres- 
sion systems, and close with a discussion of image com- 
inunication systems issues. 

I I 

t 8. A typical compression system. The analog-to-digital converter samples and finely quantizes an im- 
age, producing a digital representation. A signal decomposition uses linear transforms or filter banks to 
break this digital representation into parallel channels of separate images. Most of the compression 
occurs in the quantization stage. Lossless compression (entropy coding) typically involves run-length 
coding combined with Huffman or arithmetic codes to further save bits in an invertible fashion. 
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Source Coding Principles 
In an ideal image coder (or any source coder) one would 
like high fidelity of the reconstructed image at the receiver 
in combination with low bit-rate and low complexity of 
the coder and the decoder. Alas, these requirements are at 
odds with each other, and good design is a question of 
finding optimal trade-offs. Source-coding theory focuses 
on the basic trade-off between average rate, the bit-rate in 
terms of bits per pixel, and average distortion, measured 
commonly by mean-squared error. Although often ma- 
ligned, weighted versions of squared error (especially 
when applied to transformed signals and allowed to de- 
pend on the input) have proved quite useful as indications 
of perceived quality. Complexity considerations may en- 
ter through structural constraints on the specific types of 
codes considered. 

The optimal trade-off between rate and distortion can 
be precisely defined in several equivalent ways: by mini- 
mizing the (average) distortion,I), subject to a constraint 
on the (average) rate, R, by minimizing the rate subject to 
a constraint on the distortion, or by an unconstrained 
minimization of the Lagrangian cost function, I) + w1, 
where the Lagrange multiplier, h, provides a weighting of 
the relative importance of distortion and bit-rate. 

The theory of data compression has two principal 
branches, both of which are celebrating their 50th birth- 
day: Shannon’s rate-distortion theory, a branch of infor- 
mation theorv sketched in his 1948 paper [238] and 
developed in ;emarkably complete form in his 1959 pa- 
per [239], and high-rate or high-resolution quantization 
theory, an approach involving approximations for low 
distortion and high bit-rate that began with the classical 
work on PCiM (pulse coded modulation) of Oliver, 
Pierce, and Shannon [240] and the work on quantization 
error spectra by Benett [241]. Rate-distortion theory 
[242- 2451 provides unbeatable lower bounds to the ob- 
tainable average &stortion for a fixed average rate, or vice 
versa. It also promises that codes exist that approach these 
bounds when the code dimension and delay become 
large. High-rate quantization theory [246,247] provides 
approximations for distortion and rate that can be opti- 
mized for fixed and finite dimension and delay. These re- 
sults imply many useful comparisons of the gains 
achievable by transform coding and other structured 
codes in comparison with the Shannon optima. 

Unfortunately, the theorv does not provide us with 
an explicit method for constructing a practical optimum 
coder and decoder. It can nevertheless give very impor- 
tant hints about the properties of an optimum coder/de- 
coder. For example, for wide-sense stationary Gaussian 
sources with memory and mean-squared error distor- 
tion, the mathematical form of the rate-distortion func- 
tion suggests that an optimum coder splits the original 
signal into spectral components of infinitesimal band- 
width and encodes these spectral components in an inde- 
pendent manner [248]. This is consistent with the 

high-rate quantization theory, which demonstrates that 
the decorrelating I<LT is optimal for transform coding of 
Gaussian sources. The corresponding bit allocation for 
the separate subband quantizers should make the rate 
proportional to the logarithm of energy in each subband. 
For high bit-rate, uniform scalar quantization coupled 
with high-order or adaptive entropy coding can at best 
achieve a performance 0.255 bits or 1.5 dB awayfrom the 
Shannon bound. The gap can be closed further if vector 
quantization or trellis-coded quantization is used [249, 
2501. These theoretical insights have motivated the wide- 
spread use of transform and subband coders, even when 
the rates are not high and the images are certainly not 
Gaussian. 

Transform and Subband Coding 
Transform coding and subband coding (SBC) refer to 
compression systems where the signal decomposition 
(Fig. 8) is implemented using an analysis filter bank. At 
the receiver, the signal is reassembled by a synthesis filter 
bank. Bv transform coding, we usually mean that the lin- 
ear transform is block-based (such as a block-wise DCT in 
JPEG). When transform coding is interpreted as an SBC 
technique, the impulse responses of the analysis and syn- 
thesis filters are at most as long as the subsampling factor 
employed in the subbands; thus, the image can be subdi- 
vided into blocks that are processed in an independent 
manner. General SBC, on the other hand, allows the im- 
pulse responses to overlap and thus includes transform 
coding as a special case. 

As pointed out earlier in this article, one of the most 
important tasks of the transform is to pack the energy of 
the signal into as few transform coefficients as possible. 
The DCT yields nearly optimal energy concentration for 
images, while being a lot easier to implement than the 
I<LT, which is the theoretically best orthonormal 
energy-packing transform. As a result, almost all image 
transform coders today employ the block-wise DCT, usu- 
ally with a block size of 8 x 8 pixels. The transform is fol- 
lowed by quantization (most often scalar uniform 
quantization) and entropy coding. Typically, the trans- 
form coefficients are run-level encoded; that is, succesive 
zeros along a zig-zag path are grouped with the first 
nonzero amplitude into a joint symbol which is then 
Huffman coded. For example, the widely used JPEG 
standard works in this fashion, and so do the prediction 
error encoders for MPEG, H.261, and H.263. The LOT 
could be substituted for the DCT in the above process to 
avoid some of the tvpical blocking artifacts that become 
visible with coarse quantization. Figures 9(b)-(c) show 
the DCT decomposition of the Barbam image in Fig. 
9(a) as well as the JPEG coding result at 0.5 bits/pixel. 

The full potential of SBC is unleashed when nonuniform 
bandsplitting is used to build multiresolution representa- 
tions of an image. Beside excellent compression, multireso- 
lution coders provide the successive approximation feature; 
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n the past few years, the advent of international standards 
for digital image and video coding has given the world a 

vast new array of capabilities for visual communication. 
Widespread communication is impossible without the use of 
a common language, and a visual-coding “standard” is a spe- 
cialized language that defines how to interpret the digital 
representations of pictures. 

The compressed coding of pictures into digital form was 
primarily the domain of cloistered research laboratories just 
a few years ago. Today, millions of people worldwide watch 
television pictures that have been digitally transmitted, view 
and create coded pictures and video on the Web, view coded 
video on their personal computers, and even use digital 
videotelephony for interactive remote conversations. The 
key to malung this transition from the research lab to the 
casual user has been the creation of standards for visual 
communication. 

These standardization activities have provided great 
opportunities for researchers to directly influence the 
world of the future. The standardization groups meet to 
closely examine the capabilities, performance, and 
practicality of the various concepts, features, and designs 
that are brought forth from the research community. 
They then collaborate to merge the best of these ideas 
into a coherent and fully defined specification that all can 
use. Repeatedly, the final written standard has become a 
better overall technical solution than any of the 
individual proposals that  were brought  into the 
collaborative process. 

The standards have themselves become touchstones for new 
creative research, since they provide a well-known reference for 
comparison. The creation and promulgation of a standard 
organizes the collective thoughts of the technical community, 
creating a breadth of understanding and experience that could 
not have been achieved by research alone. 

The biggest names in the realm of standardization of 
visual information coding are the ITU-T and the ISO/lEC 
JTCl organizations. The ITU-T (formerly called the 
CCIIT)  approved the first digital video-coding standard 
(Rec. H.120) in 1984, and has been updating its methods 
periodically since then by revising H.120 in 1988, then 
moving on to increasingly successful standards in 1990 
(Rec. H.261) and 1995 (Rec. H.263), and enhancing its 
latest standard this year (Rec. H.263+). In 1993, the 
ISO/IEC JTCl  completed the MPEG-1 video-coding 
standard (IS 1 1 172-2) and joined with the ITU-T to develop 
the JPEG standard for still pictures in 1994 (IS 10918-1) 
and the MPEG-2 standard for video in 1996 (IS 13818-2). 
Each of these standards has led to increasing growth in the 
use and variety of applications for digital coded visual 
information, and both groups are working on new efforts for 
the future (such as the MPEG-4 project in ISO/IEC JTCl 
and the H.263 + + and H.26L projects in the ITU-T). 

Today‘s standards development process has become very 
responsive to the progress of research, and the research 
world has been helped by the progress of standardizatlon. 
This symbiotic relationship will continue into the future, 
providing a fertile field for new technology development. 

as higher-frequency components are added, higher- 
resolution, better-quality images are obtained. Moreover, 
multiresolution techniques fit naturally into joint 
source-channel coding schemes. Figures 9(d)-(e) show 
the uniform subband decomposition of the Barbara image 
as well as the SBC coding result at 0.5 bits/pixel, whde Fig- 
ures 9(f)-(g) show the octave-band subband decomposition 
and the coding result at 0.5 bits/pixel. Subband coders with 
octave band decomposition such as illustrated in Figures 
9(f)-(g) are also often referred to as discrete wavelet trans- 
form (DWT) coders, or wavelet coders. 

The multiresolution image representation in Figures 
9(f)-(g) is a critically sampled subband pyramid. How- 
ever, overcomplete representations, first introduced as 
the Laplacian pyramid by Burt and Adelson [251], are 
also very powerful. An input image is fed into a lowpass 
filter followed by a downsampler to produce a coarse ap- 
proximation that is then used to interpolate the original 
(by upsampling and filtering) and calculate the difference 
as the interpolation error. This process can be recursively 
applied to the coarse version. Thus, instead of compress- 
ing the original image one compresses the coarse version 
and the interpolation errors at various resolutions. The 
interpolation can be based on lower-resolution images 
with or without quantization error (referred to as open- 

loop and closed-loop pyramid coders). The overcomplete 
pyramid provides energy concentration and possesses the 
successive approximation property, since one can start 
with the coarsest version and then add detail (interpola- 
tion errors) to reconstruct higher-resolution versions. 
Moreover, the pyramid coding scheme allows for nonlin- 
ear operations for producing the coarse version and the 
details. Its only disadvantage is that it produces a redun- 
dant representation. 

Today, many state-of-the-art multiresolution image 
coders draw on the ideas introduced by Shapiro in his em- 
bedded zero-tree wavelet algorithm (EZW) [252]. The 
algorithm employs a data structure called zero-tree, 
where one assumes that if a coefficient at a low frequency 
is zero, it is highly likely that all the coefficients at the 
same spatial location at all higher frequencies will also be 
zero; thus, when encountering a zero-tree root, one can 
discard the whole tree of coefficients in higher-frequency 
bands. Moreover, the algorithm uses successive approxi- 
mation quantization, which allows termination of encod- 
ing or decoding at any point. These initial ideas have 
produced a new class of algorithms aimed at exploiting 
both frequency and spatial phenomena [253]. 

While research has shown that wavelet coders can pro- 
duce superior results, transform coders employing a 
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standards have turned JPEG and MPEG into 

terms and brought digital images and 
ions of homes worldwide. But what have 
s visual compression researchers, the com- 

responsible for developing the algorithms? Now 
our best ideas have been perfected, packaged, and pol- 

ished for public dissemination, what remains for research- 
ers in this field to do? Should research continue on 
algorithms whose chances of ever becoming a standard 
might be questionable? 

The visual-compression research community has wrestled 
with these kinds of questions over the past five years, and the 
answers that have been offered have reshaped the field. 
Widespread acceptance of visual coding standards have forced 
us to reassess directions and priorities, but overall, it is clear that 
standards open more doors than they close, and standards 
cannot alter the nature or diminish the importance of truly 
fundamental research advances in the field. 

By accelerating the development of visual applications, 
standards have helped uncover challenging new problems 
offering exciting opportunities for the research community. 
Robust transmission of images and video over packet 
networks and video transmission over wireless channels have 
become hot research topics. Digital video libraries, 
content-based retrieval, and digital watermarking are 
examples of active new research areas spawned by the 
widespread application of coding standards and involving 
problems of visual representation that are closely related to 
the coding problem. 

Balanced against their positive eff’ea~, standards have also 
had the unfortunate effect of diverung attention from important 

fundamental questions in image and video compression. The 
success of standards has suggested that they are based on 
sound technical approaches to the coding problem and has 
focused the community’s attention on the refinement of 
those approaches for improved performance. In fact, today‘s 
standards are built on ad-hoc frameworks that reflect our 
very limited understanding of the fundamental structure of 
image and video sources. There is very little reason to believe 
either that today’s standards come close to the ideal 
performance possible for these sources (that is, it is unhkely 
that they are near the fundamental entropy of these sources), 
or that there cannot exist simple, practical coding algorithms 
performing much better than today’s standards. In 
par t icular ,  t h e  s t anda rd  hybr id  f ramework  for  
motion-compensated video coding is based on a naive 
understanding of the relationship between motion and 
intensity uncertainty models for video sequences. 

The gaps in our understanding are wide, and progress in 
bridging those gaps requires continued strong research 
efforts by the community. Unfortunately, the fundamental 
advances that are needed are not likely to produce immediate 
practical algorithms to challenge today’s standards, and this 
has discouraged research in these directions. It is particularly 
important that young researchers entering the field be 
encouraged to apply their creativity and healthy skepticism 
toward challenging accepted frameworks, engaging basic 
issues, and proposing sound alternative approaches, no 
matter how far-fetched they may appear. In the long term, 
these efforts promise progress on important fundamental 
questions, a more vibrant research community AND 
superior standards. 

block-wise DCT are still dominant today. M e r  years of 
use, DCT coders are very well understood and many im- 
provements have been made, for example in the area of 
fast algorithms or by imposing perceptual criteria. The 
next still-image coding standard, JPEG 2000, as well as 
the next in the line ofMPEG standards, MPEG-4, might 
verywell include wavelet coding, in addition to or in place 
of the DCT. 

Predidve Coding 
Except when used with subband or transform coding, pre- 
dictive coders do not decompose the image into independ- 
ent components. Instead, both the coder and the decoder 
calculate a prediction value for the current signal sample. 
Then, the prediction error, rather than the signal sample it- 
self, is transmitted. This principle can be used for both 
lossy and lossless image coding. Most commonly, the pre- 
dictors calculate linear combinations of previous image 
samples, since general nonlinear predictors, addressed by 
combinations of, say, 8-bit pixels, would often require 
enormous look-up tables for the same performance. 

For lossy predictive coding, differential code pulse 
modulation (DPCM), invented by Cutler in 1952, has 

been used since the early days of image coding. Intra- 
frame DPCM exploits dependencies within a frame of a 
video sequence. Typically, pixels are encoded in line-scan 
order and the previous sample in the current line and Sam- 
ples from the previous line are combined for prediction. 
Today, this simple scheme has been displaced by vastly 
superior transform SBC schemes, without doubt a result 
of the unnatural causal half-plane constraint for the re- 
gion of support of the predictor. In fact, lossy predictive 
intraframe coding is alive and well in the form of predic- 
tive closed-loop pyramid coders that feed back the quanti- 
zation error before encoding the next higher-resolution 
layer (see the section on Image Transforms). It has been 
shown recently that closed-loop pyramid coders even 
outperform the equivalent open-loop overcomplete pyra- 
mid representations when combined with scalar quantiz- 
ers [254]. 

For interframe coding where statistical dependencies 
between successive frames of a video sequence are ex- 
ploited, DPCM is the dominating scheme today and for 
the foreseeable future. Other than, for example, spatio- 
temporal SBC, interframe DPCM avoids the undesirable 
delay due to buffering of one or several frames. Moreover, 
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9. Subband image coding results: (a) Barbara image of size 
5 12 x 5 12 pixels with 8 bits/pixel; (b) 8 x 8 DCT transform of 
Barbara used in JPEG; (c) JPEG-coded Barbara with 0.5 
bits/pixel and 28.26 dB SNR; (d) Uniform subband decomposi- 
tion of Barbara; (e) SBC coded Barbara using uniform subband 
decomposition at 0.5 bits/pixel with 30.38 dB SNR; (0 Octave- 
band subband/wavelet decomposition of Barbara; (g) SBC 
coded Barbara using octave-band subband/wavelet decompo- 
sition at 0.5 bits/pixel with 29.2 1 dB SNR. 

it is straightforward to incorporate motion adaptation 
and motion compensation into a temporal prediction 
loop and combine motion-compensated prediction with 
other schemes for encoding of the prediction error. 

Motion-Compensated Video Coding 
All modern video-compression coders such as those stan- 
dardized in the ITU-T Rec. H.261 [255] and H.263 

[256], or in the I S 0  MPEG standards [257], are 
m o t  ion - c o m  p e n s a t  e d h y b r i d cod e r s .  Motion-  
compensated hybrid coders estimate the displacement 
from frame to frame and transmit the motion vector field 
as side information in addition to the motion- 
compensated prediction error image. The prediction er- 
ror image is encoded with an intraframe source encoder 
that exploits statistical dependencies between adjacent 
samples. This intraframe encoder is an 8 x 8 DCT coder in 
all current video-coding standards [255-2571, but other 
schemes, such as subband coders or vector quantizers, can 
be used as well. 

Motion-compensated hybrid coding can theoretically 
outperform an optimum intraframe coder by a t  most 0.8 
bits/pixel in moving areas ofaii image, ifmotion compen- 
sation is performed with only integer-pixel accuracy 
[258]. For half-pixel accuracy, this gain can be up to 1.3 
bits/pixel. In addition, in nonmoving areas (or other parts 
of the image that can be predicted perfectly) no predic- 
tion error signal has to be transmitted and these areas can 
simply be repeated from a frame store, a technique often 
referred to as conditional replenishment. 

Motion compensation works well for IOW spatial fre- 
quency components in the video signal; for high spatial 
frequency components even a small inaccuracy of the 
motion conipensation will render the prediction ineffec- 
tive. Hence, it is important to spatially lowpass filter the 
prediction signal by a loop filter. This loop filter is ex- 
plicitly needed for integer-pixel accurate motion com- 
pensation. For subpixel accurate motion compensation, 
it can be incorporated into the interpolation kernel re- 
quired to calculate signal samples between the original 
sampling positions. The loop filter also improves predic- 
tion by acting as a noise-reduction filter. Prediction can 
be further improved by combining multiple independ- 
ently motion-compensated prediction signals. Examples 
are the bidirectionally predicted R-frames in MPEG 
[257] or overlapped block motion compensation [259] 
that has also been incorporated in the ITU-T Rec. 
H.263 [256]. 

Especially at low bit-rates, motion compensation is se- 
verelv constrained bv the limited bit-rate available to 
transmit the motion. vector field as side information. 
Rate-constrained estimation [260] and a rate-efficient 
representation of the motion vector field are therefore 
very important. For simplicity, most practical video- 
coding schemes today still employ block-wise constant 
motion compensation. More ad\,anced schemes interpo- 
late between motion vectors, employ arbitrarily shaped 
regions, or use triangular meshes for representing a 
smooth motion vector field. Ultimately, we might expect 
3-D models to be incorporated into motion compensa- 
tion-one day, we hope with such success that transmis- 
sion of the prediction error is no longer required. This is a 
goal of ongoing research into model-based video coding, 
although the success of such schemes for general ?pes of 
video material is still uncertain. 
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Rate-Distortion Methods in 
Compression Systems 
As outlined earlier, the formal framework for compres- 
sion methods consists of rate distortion theory and high- 
rate quantization theory. How can this theory be applied 
to practical compression schemes? Recent work has made 
progress in this direction by bridging at least in part the 
gap between theory and practice in source coding. The 
idea is to use standard optimization procedures such as 
Lagrangian methods to find local optimal operating 
points in a rate-distortion sense, under some assumptions 
about the source. Such techniques were first introduced 
in the context of PCM by Lloyd in the 195Os, and were 
later used for vector quantization designs (for example, 
[261]) and other problems involving transforms and 
quantization. As an example, consider the problem of 
finding best orthonormal bases for compression from a 
large collection of possible transforms. This can be posed 
as a Lagrangian optimization problem: each set of trans- 
form coefiicient generates an operational rate-distortion 
curve, and optimal allocation of bit-rate between trans- 
form coefficients is standard. Among all possible trans- 
forms, Lagrange optimization allows one to choose the 
winning transform, and this can be done in an efficient 
tree-pruning manner if the transforms have some struc- 
ture [262]. 

Similar ideas can be used for many of the other prob- 
lems appearing in practical compression schemes. As ex- 
amples, we can cite rate control for 17ideo coders using 
dynamic programming [ 2631, allocation of rate between 
competing units (for example, motion and residual), and 
optimization of quantization schemes. The important 
point is that, under certain assumptions such as inde- 
pendence, an optimal or locally optimal solution is 
sought, as opposed to the somewhat ad-hoc methods that 
are often used in practical compression schemes. 

Image Communication System Issues 
Image and video compression is usually not done in isola- 
tion, but integrated in to a larger system, typically a com- 
munication system. This poses some interesting 
challenges to the designer of the compression system. 

In his groundbreaking 1948 paper [238] that laid the 
foundations of information theory, Shannon showed that 
for point-to-point communication over a well-defined 
channel, a separate optimization of source coding and 
channel coding can lead to a performance arbitraril!~close 
to the information-theoretic bound for the entire system. 
Therefore, traditionallv, the coding problem has been 
split into two independent subproblems: source com- 
pression and channel coding [264]. This has resulted in 
largely independent research in the two areas. However, 
many practical situations do not satisfy the assumption 
required for the separation principle to hold. For exam- 
ple, most communication is done with a finite-delay con- 
straint, which leads to finite block sizes. Under such delay 

constraints, error probabilities can be non-negligible, and 
thus the separation principle has to be revisited. 

In such cases, practical schemes using unequal error 
protection of different parts of the coded stream are used. 
For example, in video coding for noisy channels, the mo- 
tion vectors are highly protected, since their loss would be 
catastrophic. Motion residuals (errors after motion com- 
pensation) are either not protected, or much less pro- 
tected than the motion vectors. In multiresolution source 
coders, it is natural to protect the coarse resolutions 
(which are absolutely necessary) more than the fine de- 
tails; this is another instance of unequal error protection. 
Note that multiresolution video coding requires 
multiscale motion compensation [265], An interesting 
application of multiresolution coding is the progressive 
transmission of images, in particular in browsing applica- 
tions. Instead of coding at a fixed rate, one has to accom- 
modate many rates, depending on the resolution desired 
by the particular user accessing the image. 

Given a source and a channel, how do we allocate re- 
sources to source and channel coding (still under the finite- 
delay constraint)? The answer turns out to be more compli- 
cated than expected and is only partly known [266].The 
question becomes even more intricate when protocol issues 
are included (as in channels with feedback [267]). 

All methods that allow some interaction of the source 
and the channel coders go under the name of a joint 
source/channel coding system. Thev do not fit the classic 
separation principle; rather, they solve the practical prob- 
lem of robust communication when errors do occur. An 
instance where the separation principle cannot be used is 
in the case of multiple channels, as in broadcast or mul- 
ticast scenarios. Then, users with very different channels 
have to be accommodated, which leads to schemes that 
adapt to the particular channels they face. For example, 
embedded modulation together with multiresolution 
source coding leads to a robust scheme with graceful deg- 
radation when the channel degrades [268]. Similar ideas 
can be adapted to multicast over packet networks 12691. 
Finally, recent work on multiple description coding ad- 
dresses the question of transmitting several source de- 
scriptions over multiple channels. For example, two 
descriptions of a source are sent to three receivers, where 
the first two receive either description, while the third re- 
ceives both. This interesting theoretical question is rele- 
vant to transmission over lossy or delay-constrained 
packet networks, where random drops may occur. Re- 
ceiitly, Vaishampayan derived quantization schemes for 
this problem 12701. 

Finally, let us stress the importance of protocol issues. 
If an error occurs, it can have catastrophic consequences 
(for example, loss of synchronization in a variable-length 
lossless code). Therefore, there exists a need for a power- 
ful mechanism to recover from errors, using feedback 
channels (in point-to-point communications) or resyn- 
chronization points (in multicast situations). In a practi- 
cal image/video communication system, one can do 
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he prototypical fractal coder, first proposed by Barns- 
ley and Jacquin [271], encodes images via a process 

resembling vector quantization. The twist is that fractal 
coders employ a vector codebook derived from the image 
being coded rather than using a prespecified codebook. 
The result is a coded image representation very different 
from that for transform coders: the stored data defines a 
contraction map of which the original image is an ap- 
proximate fured point. Images are decoded by iterating 
this stored map to convergence. 

Transform coders take advantage of  spatial 
redundancy in images. Fractal coders take a somewhat 
different approach: they exploit redundancy in scale. 
Common image features such as edges and linear 
gradients are self-similar, in the sense that they are 
invariant under contractions up to an affine transform. 
This self-similarity of key image features motivates the 
particular codebook used by fractal coders-a set of affine 
transforms of contracted image blocks. One intriguing 
property of fractal coders is that this self-similarity 
property can be used to synthesize finer detail, particularly 
at edges, than was present in the original image. 

A major drawback of fractal coding is the high 
complexit). of the encoding process, and considerable 
effort has been devoted to finding efficient encoding 
algorithms. Additional important research areas have 
included bounding  reconstruct ion errors  and  
determining conditions under which the iterative 
decoding algorithm converges. 

Although the mechanics of fractal coding are quite 
different from transform coders, fractal coders have 
recently been shown to be closely related to wavelet 
coders [272]. The link is a natural one, since wavelet bases 
possess a dyadic self-similar structure similar to that 
found in fractal coders. This wavelet/fractal synergy 
provides important insights into the workings of fractal 
coders. The new understanding has improved the 
performance of fractal coders considerably, and it has 
revealed some basic limitations of current coders that will 
require further research to overcome. 

better by jointly designing source coder, channel coder, 
and transmission protocols. Research that addresses these 
issues is still in its infancy. 

Better Compression Forever? 
Students of image coding often ask how many bits at least 
are required to represent an image or a motion video with 
reasonable quality. They ask this question not only out of 
scientific curiosity, but they also want to find out whether 
research in the field has a future, or whether all the inter- 
esting problems have already been solved. 

As illustrated by the success of image and video coding 
standards (see the “Visual Coding Standards: A New 
World of Communication” and “Visual Coding Stan- 
dards: A Research Community‘s Midlife Crisis” side- 

_______ 

Don Peurson, Univem‘sity ofEssex, UK 
ention model-based codinJ (MBC) to someone and 
they tend to think of animated texture-mapped 

wire-frame heads, some of them looking distinctly 
zombie-like! This is indeed the way MBC began back in 
the early 1980s; it is also where many young people start 
their research today. But it is not necessarily the way it 
will end; coding methods invented for one purpose 
sometimes find their application elsewhere. An example 
is run-length coding, which was first investigated for 
gray-scale picture compression before finding its home in 
facsimile . 

What will determine MBC‘s ultimate fate is its coding 
efficiency. This depends on the picture material, as it does 
with all image-coding methods; no method works well 
for all types ofobjects and all types of movement. We may 
have many different options within a coder, each suited to 
a particular type of visual material, and that we (or rather 
the coder) will choose or switch between. Experiments 
alone will show where MBC fits in. Those conducted so 
far tend to indicate that the method works best for large, 
relatively rigid moving areas in translational or rotational 
movement. This is not surprising when we think about it, 
since shape information has to be added to that for 
motion and texture. The additional overhead must save 
texture bits to be worth sending. 

With increasing levels of sophistication in facial 
analysis and modeling, it is quite likelythat the traditional 
approach to MBC will eventually yield highly efficient 
and believable talking heads in low bit-rate applications. 
But it is also possible that MBC will be found to be w e l l  
on a selective basis for coding large nonfacial moving 
objects in higher-resolution, higher bit-rate video. MBC 
is theoretically efficient for such objects, and they are the 
very objects that cause difficulties in the current 
generation of MPEG-2 coders [273,274]. 

bars), image and video coding is a mature ciiscipiina 
today. It rests solidly on the foundations of source c 
theory. Often, practical schemes perform close to 
information-theoretic bounds. Note, however, that 
of these bounds are calculated on the basis of crude mod- 
els about the structure of images. As image models be* 
come more refined, compression ratios can improvg 
further. Moreover, many interesting open problems aw 
yet to be solved on how to gracefully integrate image and 
video codecs into communication systems, where prevj- 
ously neglected requirements, such as robustness, delay, 
or random access, have to be taken into account, We 
lieve that image and video coding will remain a qui 
paced, exciting field well into the next millennium. 

Image-Processing Software and Hardwan 
Ed]. Deb, Purdue Univemiy 
The hardware and sofnvare tools available to acquire and 
process digital images have changed a great deal in 50 
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