Content-Based Indexing for Search and Browsing
Storage and archiving of digital video in shared disks and
servers in large volumes, browsing of such databases in
real-time, and retrieval over switched and packet net-
works pose many new challenges, one of which is efficient
and effective description of content. The simplest method
to index content is by means of a thesaurus of keywords,
which can be assigned manually or semiautomatically to
programs, shots, or visual objects [232]. It is also desir-
able to supplement these keywords with visual features
describing appearance (color, texture, and shape) and ac-
tion (object and camera motion), as well as sound (audio
and speech) and textual (script and close-caption) fea-
tures [227, 233]. Furthermore, it is of interest to browse
and search for content using compressed data since al-
most all video data will likely be stored in compressed for-
mat [234].

Video-indexing systems may employ a frame-based,
scene-based, or object-based video representation {235].
The basic components of a video-indexing system are
temporal segmentation, analysis of indexing features, and
visual summarization. The temporal segmentation step
extracts shots, scenes, and/or video objects. The analysis
step computes content-based indexing features for the ex-
tracted shots, scenes, or objects. Content-based features
may be generic or domain-dependent. Commonly used
generic indexing features include color histograms, type
of camera motion [236], direction and magnitude of
dominant object motion, entry and exit instances of ob-
jects of interest [237], and shape features for objects.
Domain-dependent feature extraction requires a priori
knowledge about the video source, such as news pro-
grams, particular sitcoms, sportscasts, and particular
movies. Content-based browsing can be facilitated by a
visual summary of the contents of a program, much like a
visual table of contents. Among the proposed visual sum-
marization methods are story boards, visual posters, and
mosaic-based summaries, With the upcoming MPEG-7
standardization effort on content-based video descrip-
tion, this subject is sure to remain an active research topic
in the near future.

Image and Video Coding

Bernd Girod, University of Erlangen-Nurembery; Robert
Gray, Stanford University; Jelena Kovacevic, Lucent Tech-

nologies; and Martin Vetterli, Swiss Federal Institute of Tech-
nology and University of Californin, Bevkeley

Due to the vast amount of data associated with images
and video, compression is a key technology for their digi-
tal transmission and storage. The availability and demand
for images and video continue to outpace increases in net-
work capacity. Hence, the importance of compression is
not likely to diminish, in spite of the promises of unlim-
ited bandwidth.

Compression takes advantage of the structure of im-
ages and video, especially of the statistical redundancy in-
herent in such signals. It can also exploit the limitations of
human visual perception to omit components of the sig-
nal that will not be noticed.

A typical compression system has several stages as de-
picted in Fig. 8. The analog-to-digital converter samples
and finely quantizes an image, producing a digital repre-
sentation. A signal decomposition uses linear transforms
or filter banks to break the signal into parallel channels of
separate images (bands or groups of coefficients). Such
decompositions serve to compact the energy into a few
coefficients, to decorrelate separate subbands or groups
of coefficients, and to convert the images into a form
where perceptual processing is naturally incorporated.
Most of the compression occurs in the quantization stage,
which operates in the transform domain on individual
pixels (scalar quantization) or on groups of pixels (vector
quantization). Lossless compression (entropy coding)
typically involves run-length coding combined with
Huffman or arithmetic codes to further save bits in an in-
vertible fashion. Occasionally specific components will be
combined or omitted, but most current image-coding
standards possess all of the components in some form.

The enormous commercial potential of image and
video coding has stimulated rapid growth of the research
efforts to find improved or entirely new techniques. In
this short survey we do not attempt a comprehensive
overview; rather we selectively summarize some of the
most common themes and principles of this exciting field.
We start by reviewing source-coding principles, which
are not specific to image coding, but are fundamentally
important nevertheless. We then discuss subband and
transform coding, move on to predictive coding, motion
compensation and rate-distortion methods in compres-
sion systems, and close with a discussion of image com-
munication systems issues.

Original
Signal

Compressed
Bit-Stream

4. 8. A typical compression system. The analog-to-digital converter samples and finely quantizes an im-
age, producing a digital representation. A signal decomposition uses linear transforms or filter banks to
break this digital representation into parallel channels of separate images. Most of the compression
occurs in the quantization stage. Lossless compression (entropy coding) typically involves run-length
coding combined with Huffman or arithmetic codes to further save bits in an invertible fashion.
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Source Coding Principles

In an ideal image coder (or any source coder) one would
like high fidelity of the reconstructed image at the receiver
in combination with low bit-rate and low complexity of
the coder and the decoder. Alas, these requirements are at
odds with each other, and good design is a question of
finding optimal trade-offs. Source-coding theory focuses
on the basic trade-off between average rate, the bit-rate in
terms of bits per pixel, and average distortion, measured
commonly by mean-squared error. Although often ma-
ligned, weighted versions of squared error (especially
when applied to transformed signals and allowed to de-
pend on the input) have proved quite useful as indications
of perceived quality. Complexity considerations may en-
ter through structural constraints on the specific types of
codes considered.

The optimal trade-off between rate and distortion can
be precisely defined in several equivalent ways: by mini-
mizing the (average) distortion, D, subject to a constraint
on the (average) rate, R, by minimizing the rate subject to
a constraint on the distortion, or by an unconstrained
minimization of the Lagrangian cost function, D + AR,
where the Lagrange multiplier, A, provides a weighting of
the relative importance of distortion and bit-rate.

The theory of data compression has two principal
branches, both of which are celebrating their 50th birth-
day: Shannon’s rate-distortion theory, a branch of infor-
mation theory sketched in his 1948 paper [238] and
developed in remarkably complete form in his 1959 pa-
per [239], and high-rate or high-resolution quantization
theory, an approach involving approximations for low
distortion and high bit-rate that began with the classical
work on PCM (pulse coded modulation) of Oliver,
Pierce, and Shannon [240] and the work on quantization
error spectra by Benett [241]. Rate-distortion theory
[242- 245] provides unbeatable lower bounds to the ob-
tainable average distortion for a fixed average rate, or vice
versa. It also promises that codes exist that approach these
bounds when the code dimension and delay become
large. High-rate quantization theory [246, 247] provides
approximations for distortion and rate that can be opti-
mized for fixed and finite dimension and delay. These re-
sults imply many useful comparisons of the gains
achievable by transform coding and other structured
codes in comparison with the Shannon optima.

Unfortunately, the theory does not provide us with
an explicit method for constructing a practical optimum
coder and decoder. It can nevertheless give very impor-
tant hints about the properties of an optimum coder/de-
coder. For example, for wide-sense stationary Gaussian
sources with memory and mean-squared error distor-
tion, the mathematical form of the rate-distortion func-
tion suggests that an optimum coder splits the original
signal into spectral components of infinitesimal band-
width and encodes these spectral components in an inde-
pendent manner [248]. This is consistent with the
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high-rate quantization theory, which demonstrates that
the decorrelating KLT is optimal for transform coding of
Gaussian sources. The corresponding bit allocation for
the separate subband quantizers should make the rate
proportional to the logarithm of energy in each subband.
For high bit-rate, uniform scalar quantization coupled
with high-order or adaptive entropy coding can at best
achieve a performance 0.255 bits or 1.5 dB away from the
Shannon bound. The gap can be closed further if vector
quantization or trellis-coded quantization is used [249,
250]. These theoretical insights have motivated the wide-
spread use of transform and subband coders, even when
the rates are not high and the images are certainly not
Gaussian.

Transform and Subband Coding

Transform coding and subband coding (SBC) refer to
compression systems where the signal decomposition
(Fig. 8) is implemented using an analysis filter bank. At
the receiver, the signal is reassembled by a synthesis filter
bank. By transform coding, we usually mean that the lin-
ear transform is block-based (such as a block-wise DCT in
JPEG). When transform coding is interpreted as an SBC
technique, the impulse responses of the analysis and syn-
thesis filters are at most as long as the subsampling factor
employed in the subbands; thus, the image can be subdi-
vided into blocks that are processed in an independent
manner. General SBC, on the other hand, allows the im-
pulse responses to overlap and thus includes transform
coding as a special case.

As pointed out earlier in this article, one of the most
important tasks of the transform is to pack the energy of
the signal into as few transform coefficients as possible.
The DCT vields nearly optimal energy concentration for
images, while being a lot easier to implement than the
KLT, which is the theoretically best orthonormal
energy-packing transform. As a result, almost all image
transform coders today employ the block-wise DCT, usu-
ally with a block size of 8 x 8 pixels. The transform is fol-
lowed by quantization (most often scalar uniform
quantization) and entropy coding. Typically, the trans-
form coefficients are run-level encoded; that is, successive
zeros along a zig-zag path are grouped with the first
nonzero amplitude into a joint symbol which is then
Huffman coded. For example, the widely used JPEG
standard works in this fashion, and so do the prediction
error encoders for MPEG, H.261, and H.263. The LOT
could be substituted for the DCT in the above process to
avoid some of the typical blocking artifacts that become
visible with coarse quantization. Figures 9(b)-(c) show
the DCT decomposition of the Barbara image in Fig.
9(a) as well as the JPEG coding result at 0.5 bits/pixel.

The full potential of SBC is unleashed when nonuniform
bandsplitting is used to build multiresolution representa-
tions of an image. Beside excellent compression, multireso-
lution coders provide the successive approximation feature;
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n the past few years, the advent of international standards
Ifor digital image and video coding has given the world a
vast new array of capabilities for visual communication.
Widespread communication is impossible without the use of
a common language, and a visual-coding “standard” is a spe-
cialized language that defines how to interpret the digital
representations of pictures.

The compressed coding of pictures into digital form was
primarily the domain of cloistered research laboratories just
a few years ago. Today, millions of people worldwide watch
television pictures that have been digitally transmitted, view
and create coded pictures and video on the Web, view coded
video on their personal computers, and even use digital
videotelephony for interactive remote conversations. The
key to making this transition from the research lab to the
casual user has been the creation of standards for visual
communication.

These standardization activities have provided great
opportunities for researchers to directly influence the
world of the future. The standardization groups meet to
closely examine the capabilities, performance, and
practicality of the various concepts, features, and designs
that are brought forth from the research community.
They then collaborate to merge the best of these ideas
into a coherent and fully defined specification that all can
use. Repeatedly, the final written standard has become a
better overall technical solution than any of the
individual proposals that were brought into the
collaborative process.

Visual Coding Standards:
A New World of Visual Communication
Gary ]. Sullivan, PictureTel Corporation

The standards have themselves become touchstones for new
creative research, since they provide a well-known reference for
comparison. The creation and promulgation of a standard
organizes the collective thoughts of the technical community,
creating a breadth of understanding and experience that could
not have been achieved by research alone.

The biggest names in the realm of standardization of
visua} information coding are the ITU-T and the ISO/IEC
JTC1 organizations. The ITU-T (formerly called the
CCITT) approved the first digital video-coding standard
{Rec. H.120) in 1984, and has been updating its methods
periodically since then by revising H.120 in 1988, then
moving on to increasingly successful standards in 1990
(Rec. H.261) and 1995 (Rec. H.263), and enhancing its
latest standard this year {(Rec. H.263+). In 1993, the
ISO/IEC JTC1 completed the MPEG-1 video-coding
standard (IS 11172-2) and joined with the ITU-T to develop
the JPEG standard for still pictures in 1994 (IS 10918-1)
and the MPEG-2 standard for video in 1996 (IS 13818-2).
Each of these standards has led to increasing growth in the
use and variety of applications for digital coded visual
information, and both groups are working on new efforts for
the future (such as the MPEG-4 project in ISO/IEC JTC1
and the H.263++ and H.26L projects in the ITU-T).

Today’s standards development process has become very
responsive to the progress of research, and the research
world has been helped by the progress of standardization.
This symbiotic relationship will continue into the future,
providing a fertile field for new technology development.

as higher-frequency components are added, higher-
resolution, better-quality images are obtained. Moreover,
multiresolution techniques fit naturally into joint
source-channel coding schemes. Figures 9(d)-(e) show
the uniform subband decomposition of the Barbara image
as well as the SBC coding result at 0.5 bits/pixel, while Fig-
ures 9(f)-(g) show the octave-band subband decomposition
and the coding result at 0.5 bits/pixel. Subband coders with
octave band decomposition such as illustrated in Figures
9(f)-(g) are also often referred to as discrete wavelet trans-
form (DWT) coders, or wavelet coders.

The multiresolution image representation in Figures
9(f)-(g) is a critically sampled subband pyramid. How-
ever, overcomplete representations, first introduced as
the Laplacian pyramid by Burt and Adelson [251], are
also very powerful. An input image is fed into a lowpass
filter followed by a downsampler to produce a coarse ap-
proximation that is then used to interpolate the original
(by upsampling and filtering) and calculate the difference
as the interpolation error. This process can be recursively
applied to the coarse version. Thus, instead of compress-
ing the original image one compresses the coarse version
and the interpolation errors at various resolutions. The
interpolation can be based on lower-resolution images
with or without quantization error (referred to as open-

42 IEEE SIGNAL PROCESSING MAGAZINE

loop and closed-loop pyramid coders). The overcomplete
pyramid provides energy concentration and possesses the
successive approximation property, since one can start
with the coarsest version and then add detail (interpola-
tion errors) to reconstruct higher-resolution versions.
Moreover, the pyramid coding scheme allows for nonlin-
ear operations for producing the coarse version and the
details. Its only disadvantage is that it produces a redun-
dant representation.

Today, many state-of-the-art multiresolution image
coders draw on the ideas introduced by Shapiro in his em-
bedded zero-tree wavelet algorithm (EZW) [252]. The
algorithm employs a data structure called zero-tree,
where one assumes that if a coefficient at a low frequency
is zero, it is highly likely that all the coefficients at the
same spatial location at all higher frequencies will also be
zero; thus, when encountering a zero-tree root, one can
discard the whole tree of coefficients in higher-frequency
bands. Moreover, the algorithm uses successive approxi-
mation quantization, which allows termination of encod-
ing or decoding at any point. These initial ideas have
produced a new class of algorithms aimed at exploiting
both frequency and spatial phenomena [253].

While research has shown that wavelet coders can pro-
duce superior results, transform coders employing a
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Yes, standards have turned JPEG and MPEG into
household terms and brought digital images and
video into millions of homes worldwide. But what have
they done for us visual compression researchers, the com-
munity responsible for developing the algorithms? Now
thatour best ideas have been perfected, packaged, and pol-
ished for public dissemination, what remains for research-
ers in this field to do? Should research continue on
algorithms whose chances of ever becoming a standard
might be questionable?

The visual-compression research community has wrestled
with these kinds of questions over the past five years, and the
answers that have been offered have reshaped the field.
Widespread acceptance of visual coding standards have forced
us to reassess directions and priorities, but overall, it is clear that
standards open more doors than they close, and standards
cannot alter the nature or diminish the importance of truly
fundamental research advances in the field.

By accelerating the development of visual applications,
standards have helped uncover challenging new problems
offering exciting opportunities for the research community.
Robust transmission of images and video over packet
networks and video transmission over wireless channels have
become hot research topics. Digital video libraries,
content-based retrieval, and digital watermarking are
examples of active new research areas spawned by the
widespread application of coding standards and involving
problems of visual representation that are closely related to
the coding problem.

Balanced against their positive effects, standards have also
had the unfortunate effect of diverting attention from important

Visual Coding Standards:
A Research Community’s Midlife Crisis?
Michael Orchavd, Princeton University

fundamental questions in image and video compression. The
success of standards has suggested that they are based on
sound technical approaches to the coding problem and has
focused the community’s attention on the refinement of
those approaches for improved performance. In fact, today’s
standards are built on ad-hoc frameworks that reflect our
very limited understanding of the fundamental structure of
image and video sources. There is very little reason to believe
either that today’s standards come close to the ideal
performance possible for these sources (that is, it is unlikely
that they are near the fundamental entropy of these sources),
or that there cannot exist simple, practical coding algorithms
performing much better than today’s standards. In
particular, the standard hybrid framework for
motion-compensated video coding is based on a naive
understanding of the relationship between motion and
intensity uncertainty models for video sequences.

The gaps in our understanding are wide, and progress in
bridging those gaps requires continued strong research
efforts by the community. Unfortunately, the fundamental
advances that are needed are not likely to produce immediate
practical algorithms to challenge today’s standards, and this
has discouraged research in these directions. Itis particularly
important that young researchers entering the field be
encouraged to apply their creativity and healthy skepticism
toward challenging accepted frameworks, engaging basic
issues, and proposing sound alternative approaches, no
matter how far-fetched they may appear. In the long term,
these efforts promise progress on important fundamental
questions, a more vibrant research community AND
superior standards.

block-wise DCT are still dominant today. After years of
use, DCT coders are very well understood and many im-
provements have been made, for example in the area of
fast algorithms or by imposing perceptual criteria. The
next still-image coding standard, JPEG 2000, as well as
the next in the line of MPEG standards, MPEG-4, might
very well include wavelet coding, in addition to or in place
of the DCT.

Predictive Coding
Except when used with subband or transform coding, pre-
dictive coders do not decompose the image into independ-
ent components. Instead, both the coder and the decoder
calculate a prediction value for the current signal sample.
Then, the prediction error, rather than the signal sample it-
self, is transmitted. This principle can be used for both
lossy and lossless image coding. Most commonly, the pre-
dictors calculate linear combinations of previous image
samples, since general nonlinear predictors, addressed by
combinations of, say, 8-bit pixels, would often require
enormous look-up tables for the same performance.

For lossy predictive coding, differential code pulse
modulation (DPCM), invented by Cutler in 1952, has
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been used since the early days of image coding. Intra-
frame DPCM exploits dependencies within a frame of a
video sequence. Typically, pixels are encoded in line-scan
order and the previous sample in the current line and sam-
ples from the previous line are combined for prediction.
Today, this simple scheme has been displaced by vastly
superior transform SBC schemes, without doubt a result
of the unnatural causal half-plane constraint for the re-
gion of support of the predictor. In fact, lossy predictive
intraframe coding is alive and well in the form of predic-
tive closed-loop pyramid coders that feed back the quanti-
zation error before encoding the next higher-resolution
layer (see the section on Image Transforms). It has been
shown recently that closed-loop pyramid coders even
outperform the equivalent open-loop overcomplete pyra-
mid representations when combined with scalar quantiz-
ers [254].

For interframe coding where statistical dependencies
between successive frames of a video sequence are ex-
ploited, DPCM is the dominating scheme today and for
the foreseeable future. Other than, for example, spatio-
temporal SBC, interframe DPCM avoids the undesirable
delay due to buffering of one or several frames. Moreover,
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A 9. Subband image coding results: (a) Barbara image of size
512 x 512 pixels with 8 bits/pixel; (b) 8 x 8 DCT transform of
Barbara used in JPEG, (c) JPEG-coded Barbara with 0.5
bits/pixel and 28.26 dB SNR; (d) Uniform subband decomposi-
tion of Barbara, (e) SBC coded Barbara using uniform subband
decomposition at 0.5 bits/pixel with 30.38 dB SNR; (f) Octave-
band subband/wavelet decomposition of Barbara; (g) SBC
coded Barbara using octave-band subband/wavelet decompo-
sition at 0.5 bits/pixel with 29.21 dB SNR.

it is straightforward to incorporate motion adaptation
and motion compensation into a temporal prediction
loop and combine motion-compensated prediction with
other schemes for encoding of the prediction error.

Motion-Compensated Video Coding

All modern video-compression coders such as those stan-
dardized in the ITU-T Rec. H.261 [255] and H.263
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[256], or in the ISO MPEG standards [257], are
motion-compensated hybrid coders. Motion-
compensated hybrid coders estimate the displacement
from frame to frame and transmit the motion vector field
as side information in addition to the motion-
compensated prediction error image. The prediction er-
ror image is encoded with an intraframe source encoder
that exploits statistical dependencies between adjacent
samples. This intraframe encoder is an 8 x 8 DCT coder in
all current video-coding standards [255-257], but other
schemes, such as subband coders or vector quantizers, can
be used as well.

Motion-compensated hybrid coding can theoretically
outperform an optimum intratrame coder by at most 0.8
bits/pixel in moving areas of an image, if motion compen-
sation is performed with only integer-pixel accuracy
[258]. For half-pixel accuracy, this gain can be up to 1.3
bits/pixel. In addition, in nonmoving areas (or other parts
of the image that can be predicted perfectly) no predic-
tion error signal has to be transmitted and these areas can
simply be repeated from a frame store, a technique often
referred to as conditional replenishment.

Motion compensation works well for low spatial fre-
quency components in the video signal; for high spatial
frequency components even a small inaccuracy of the
motion compensation will render the prediction ineffec-
tive. Hence, it is important to spatially lowpass filter the
prediction signal by a loop filter. This loop filter is ex-
plicitly needed for integer-pixel accurate motion com-
pensation. For subpixel accurate motion compensation,
it can be incorporated into the interpolation kernel re-
quired to calculate signal samples between the original
sampling positions. The loop filter also improves predic-
tion by acting as a noise-reduction filter. Prediction can
be further improved by combining multiple independ-
ently motion-compensated prediction signals. Examples
are the bidirectionally predicted B-frames in MPEG
[257] or overlapped block motion compensation [259]
that has also been incorporated in the ITU-T Rec.
H.263 [256].

Especially at low bit-rates, motion compensation is se-
verely constrained by the limited bit-rate available to
transmit the motion vector field as side information.
Rate-constrained estimation [260] and a rate-efficient
representation of the motion vector field are therefore
very important. For simplicity, most practical video-
coding schemes today still employ block-wise constant
motion compensation. More advanced schemes interpo-
late between motion vectors, employ arbitrarily shaped
regions, or use triangular meshes for representing a
smooth motion vector field. Ultimately, we might expect
3-D models to be incorporated into motion compensa-
tion—one day, we hope with such success that transmis-
sion of the prediction error is no longer required. This isa
goal of ongoing research into model-based video coding,
although the success of such schemes for general tvpes of
video material is still uncertain.

MARCH 1998



Rate-Distortion Methods in

Compression Systems

As outlined earlier, the formal framework for compres-
sion methods consists of rate distortion theory and high-
rate quantization theory. How can this theory be applied
to practical compression schemes? Recent work has made
progress in this direction by bridging at least in part the
gap between theory and practice in source coding. The
idea is to use standard optimization procedures such as
Lagrangian methods to find local optimal operating
points in a rate-distortion sense, under some assumptions
about the source. Such techniques were first introduced
in the context of PCM by Lloyd in the 1950s, and were
later used for vector quantization designs (for example,
[261}]) and other problems involving transforms and
quantization. As an example, consider the problem of
finding best orthonormal bases for compression from a
large collection of possible transtorms. This can be posed
as a Lagrangian optimization problem: each set of trans-
form coefficient generates an operational rate-distortion
curve, and optimal allocation of bit-rate between trans-
form coefticients is standard. Among all possible trans-
forms, Lagrange optimization allows one to choose the
winning transform, and this can be done in an efficient
tree-pruning manner if the transforms have some struc-
ture [262].

Similar ideas can be used for many of the other prob-
lems appearing in practical compression schemes. As ex-
amples, we can cite rate control for video coders using
dynamic programming [263], allocation of rate between
competing units (for example, motion and residual), and
optimization of quantization schemes. The important
point is that, under certain assumptions such as inde-
pendence, an optimal or locally optimal solution is
sought, as opposed to the somewhat ad-hoc methods that
are often used in practical compression schemes.

Image Communication System Issues
Image and video compression is usually not done in isola-
tion, but integrated in to a larger system, typically a com-
munication system. This poses some interesting
challenges to the designer of the compression system.
In his groundbreaking 1948 paper [238] that laid the
foundations of information theory, Shannon showed that
for point-to-point communication over a well-defined
channel, a separate optimization of source coding and
channel coding can lead to a performance arbitrarily close
to the information-theoretic bound for the entire system.
Therefore, traditionally, the coding problem has been
split into two independent subproblems: source com-
pression and channel coding [264]. This has resulted in
largely independent research in the two areas. However,
many practical situations do not satisfy the assumption
required for the separation principle to hold. For exam-
ple, most communication is done with a finite-delay con-
straint, which leads to finite block sizes. Under such delay
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constraints, error probabilities can be non-negligible, and
thus the separation principle has to be revisited.

In such cases, practical schemes using unequal error
protection of different parts of the coded stream are used.
For example, in video coding for noisy channels, the mo-
tion vectors are highly protected, since their loss would be
catastrophic. Motion residuals (errors after motion com-
pensation) are either not protected, or much less pro-
tected than the motion vectors. In multiresolution source
coders, it is natural to protect the coarse resolutions
(which are absolutely necessary) more than the fine de-
tails; this is another instance of unequal error protection.
Note that multiresolution video coding requires
multiscale motion compensation [265]. An interesting
application of multiresolution coding is the progressive
transmission of images, in particular in browsing applica-
tions. Instead of coding at a fixed rate, one has to accom-
modate many rates, depending on the resolution desired
by the particular user accessing the image.

Given a source and a channel, how do we allocate re-
sources to source and channel coding (still under the finite-
delay constraint)? The answer turns out to be more compli-
cated than expected and is only partly known [266].The
question becomes even more intricate when protocol issues
are included (as in channels with feedback [267]).

All methods that allow some interaction of the source
and the channel coders go under the name of a joint
source/channel coding system. They do not fit the classic
separation principle; rather, they solve the practical prob-
lem of robust communication when errors do occur. An
instance where the separation principle cannot be used is
in the case of multiple channels, as in broadcast or mul-
ticast scenarios. Then, users with very different channels
have to be accommodated, which leads to schemes that
adapt to the particular channels they face. For example,
embedded modulation together with multiresolution
source coding leads to a robust scheme with graceful deg-
radation when the channel degrades [268]. Similar ideas
can be adapted to multicast over packet networks [269].
Finally, recent work on multiple description coding ad-
dresses the question of transmitting several source de-
scriptions over multiple channels. For example, two
descriptions of a source are sent to three receivers, where
the first two receive either description, while the third re-
ceives both. This interesting theoretical question is rele-
vant to transmission over lossy or delay-constrained
packet networks, where random drops may occur. Re-
cently, Vaishampayan derived quantization schemes for
this problem [270].

Finally, let us stress the importance of protocol issues.
If an error occurs, it can have catastrophic consequences
(for example, loss of synchronization in a variable-length
lossless code). Therefore, there exists a need for a power-
ful mechanism to recover from errors, using feedback
channels (in point-to-point communications) or resyn-
chronization points (in multicast situations). In a practi-
cal image/video communication system, one can do
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Exploiting Self-Similarities:
Fractal Image Compression
Geoff Dawis, Davtmouth College

“the prototypical fractal coder, first proposed by Barns-
1 ley and Jacquin [271], encodes images via a process
resembling vector quantization. The twist is that fractal
coders employ a vector codebook derived from the image
being coded rather than using a prespecified codebook.
The result is a coded image representation very different
from that for transform coders: the stored data defines a
contraction map of which the original image is an ap-
proximate fixed point. Images are decoded by iterating
this stored map to convergence.

Transform coders take advantage of spatial
redundancy in images. Fractal coders take a somewhat
different approach: they exploit redundancy in scale.
Common image features such as edges and linear
gradients are self-similar, in the sense that they are
invariant under contractions up to an affine transform.
This self-similarity of key image features motivates the
particular codebook used by fractal coders—a set of affine
transforms of contracted image blocks. One intriguing
property of fractal coders is that this self-similarity
property can be used to synthesize finer detail, particularly
at edges, than was present in the original image.

A major drawback of fractal coding is the high
complexity of the encoding process, and considerable
effort has been devoted to finding efficient encoding
algorithms. Additional important research areas have
included bounding reconstruction errors and
determining conditions under which the iterative
decoding algorithm converges.

Although the mechanics of fractal coding are quite
different from transform coders, fractal coders have
recently been shown to be closely related to wavelet
coders [272]. The link is a natural one, since wavelet bases
possess a dyadic self-similar structure similar to that
found in fractal coders. This wavelet/fractal synergy
provides important insights.into the workings of fractal
coders. The new understanding has improved the
performance of fractal coders considerably, and it has
revealed some basic limitations of current coders that will
require further research to overcome.

better by jointly designing source coder, channel coder,
and transmission protocols. Research that addresses these
issues is still in its infancy.

Better Compression Forever?

Students of image coding often ask how many bits at least
are required to represent an image or a motion video with
reasonable quality. They ask this question not only out of
scientific curiosity, but they also want to find out whether
research in the field has a future, or whether all the inter-
esting problems have already been solved.

As illustrated by the success of image and video coding
standards (see the “Visual Coding Standards: A New
World of Communication” and “Visual Coding Stan-
dards: A Research Community’s Midlife Crisis” side-
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Modei-Based Video Coding
Don Pearson, University of Essex, UK

M ention model-based coding (MBC) to someone and

¥ ithey tend to think of animated texture-mapped
wire-frame heads, some of them looking distinctly
zombie-like! This is indeed the way MBC began back in
the early 1980s; it is also where many young people start
their research today. But it is not necessarily the way it
will end; coding methods invented for one purpose
sometimes find their application elsewhere. An example
is run-length coding, which was first investigated for
gray-scale picture compression before finding its home in
facsimile.

What will determine MBC’s ultimate fate is its coding
efficiency. This depends on the picture material, as it does
with all image-coding methods; no method works well
for all types of objects and all types of movement. We may
have many different options within a coder, each suited to
a particular type of visual material, and that we (or rather
the coder) will choose or switch between. Experiments
alone will show where MBC fits in. Those conducted so
far tend to indicate that the method works best for large,
relatively rigid moving areas in translational or rotational
movement. This is not surprising when we think about it,
since shape information has to be added to that for
motion and texture. The additional overhead must save
texture bits to be worth sending.

With increasing levels of sophistication in facial
analysis and modeling, it is quite likely that the traditional
approach to MBC will eventually yield highly efficient
and believable talking heads in low bit-rate applications.
Butitis also possible that MBC will be found to bé useful
on a selective basis for coding large nonfacial moving
objects in higher-resolution, higher bit-rate video. MBC
is theoretically efficient for such objects, and they are the
very objects that cause difficulties in the current |
generation of MPEG-2 coders [273, 274].

bars), image and video coding is a mature discipling
today. It rests solidly on the foundations of source coding
theory. Often, practical schemes perform close to. their
information-theoretic bounds. Note, however, that most
of these bounds are calculated on the basis of crude mod-
els about the structure of images. As image models bex
come more refined, compression ratios can improve
further. Moreover, many interesting open problems arg
yet to be solved on how to gracefully integrate image and
video codecs into communication systems, where previs
ously neglected requirements, such as robustness, delay,
or random access, have to be taken into account, We be-
lieve that image and video coding will remain a quick-
paced, exciting field well into the next millennium.

Image-Processing Software and Hardware

Ed ]. Delp, Purdue University
The hardware and software tools available to acquire and
process digital images have changed a great deal in 50
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