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Motion-Compensating Prediction with
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Abstract— The effect of fractional-pel accuracy on the effi-
ciency of motion-compensating predictors is studied using var-
ious spatial prediction/interpolation filters. In model calculations,
the power spectral density of the prediction error is related
to the probability density function of the displacement error.
Prediction can be improved both by higher accuracy of motion-
compensation and by spatial Wiener filtering in the predictor.
Beyond a critical accuracy, the possibility of further improv-
ing prediction by more accurate motion-compensation is small.
Experiments with videophone signals and with broadcast TV sig-
nals confirm these model calculations. Sinc-interpolation, bilinear
interpolation, and Wiener filtering are compared at integer-
pel, 1/2-pel, 1/4-pel, and 1/8-pel accuracies. A new three-stage
technique for reliable displacement estimation with fractional-
pel accuracy is described; it is based on phase correlation. For
motion-compensation with block size of 16 x 16 pels, quarter-pel
accuracy appears to be sufficient for broadcast TV signals; while
for videophone signals, half-pel accuracy is desirable.

I. INTRODUCTION

OR efficient transmission of time-varying images, motion-
compensation is an important concept. It achieves data
compression by exploiting the similarities between successive
frames of a video signal. Motion-compensating prediction
(MCP) is frequently proposed in the context of codecs for
the transmission of limited-motion videotelephone or video-
conferencing signals at medium and low bit rates, as well as
for codecs accommodating full-motion material at higher rates
[1]-[22]. The majority of motion-compensating predictors
that are reported in the literature use motion-compensation
with “integer-pel accuracy;” the contents of the previous
picture are displaced by integer multiples of the horizontal
and vertical sampling intervals. Since the true frame-to-frame
displacements of the image contents are, of course, completely
unrelated to the sampling grid, we expect improved prediction
when motion-compensation with “fractional-pel accuracy” is
employed. We will refer to this improvement as the “ac-
curacy effect.” Codecs that use motion-compensation with
fractional-pel accuracy have been reported, e.g., in [6], [18],
[19], and [21]. Typically, fractional-pel accuracy is achieved
by simple bilinear interpolation, which produces a spatially
blurred prediction signal. It has been pointed out that the
use of a spatial lowpass filter in the predictor can improve
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prediction in connection with integer-pel accuracy [1], [6],
[23]. Improvement gained in this way will be referred to as
the “filtering effect.” Bilinear interpolation for fractional-pel
accuracy introduces spatial lowpass filtering as a side effect,
and it has not been clear yet, how large contributions are from
either the accuracy effect or the filtering effect.

Recently, a theoretical framework has been presented for
analysis of the performance of MCP in terms of rate distortion
theory [23]. It relates power spectral density of the prediction
error to the accuracy of motion-compensation. It is shown
in [23] that with integer-pel accuracy of the displacement
estimate, the additional gain by MCP over optimum intraframe
encoding of the signal is limited to ~0.8 bit/sample in moving
areas. Larger gains require fractional-pel accuracy.

In this paper, we apply the theory developed in [23] to
the analysis and the design of MCP, and complement it
by experimental results. In particular, we will address the
following questions.

* With fractional-pel accuracy MCP using a bilinear filter,
how large are the contributions to improved prediction of
the “accuracy effect” and of the “filtering effect”?

* To what extent can we further improve MCP by spatial
filtering in the predictor?

* What kernel for interpolation to fractional-pel accuracy
leads to the most efficient prediction?

* What accuracy of displacement measurement and motion-
compensation is adequate?

These problems are investigated both theoretically and ex-
perimentally on the basis of video signals typical for videotele-
phone and broadcasting applications. In Section II, we briefly
review hybrid coding of video signals using MCP and intro-
duce some of the nomenclature used throughout this paper.
Section III presents a model calculation which shows that
beyond a certain “critical accuracy” the possibility of further
improving prediction by more accurate motion-compensation
is very small. In Section IV, a method for displacement
estimation with fractional-pel accuracy is proposed. Finally,
Section V experimentaily compares different spatial prediction
filters at integer-pel, 1/2-pel, 1/4-pel, and 1 /8-pel accuracy
of MCP.

II. HYBRID CODING OF VIDEO SIGNALS USING
MOTION-COMPENSATING PREDICTION

The structure of many proposed state-of-the-art codecs
resembles the MCP hybrid coding scheme shown in Fig. 1
[1}-[23]. This coding scheme combines differential pulse code

0090-6778/93$03.00 © 1993 IEEE
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modulation (DPCM) along an estimated motion trajectory of
the picture contents with intraframe encoding of the prediction
error e. The displacement estimate (d,,d,) is transmitted
in addition to the intraframe-encoded prediction error. At
the receiver, the intraframe source decoder generates the
reconstructed prediction error €’, which differs from e by some
source coding error. The transmitter contains a replication of
the receiver in order to be able to generate the same prediction
value 3.

In a simple scheme, the intraframe source encoder could be
just a quantizer, such that the MCP hybrid coder (Fig. 1) is a
motion-compensating DPCM coder [2], [3], [10], [14], [16].
More sophisticated schemes encode a spatial neighborhood of
prediction errors e employing a blockwise transform, like the
discrete cosine transform (DCT) [1], [5], [6], [8], [11]-[13],
[15]}, [18], [19], a quadrature mirror filter bank [9], [17],
vector quantization (4], [7], [20], or quadtree coding [22]. In
each case, the intraframe encoder serves to remove spatial
redundancy from the signal e and to adaptively reduce the
spatial resolution, if the channel cannot accommodate a full-
resolution signal. It has been pointed out by several authors
that the motion-compensated prediction error signal is only
weakly correlated spatially [11], [21]-[23]. Thus, the potential
for redundancy reduction in the intraframe source encoder
is very small. This finding suggests that the prediction error
variance

o2 = E{e’} — E*{e} )
is a useful measure that is directly related to the minimum
achievable transmission bit rate for a given signal-to-noise
ratio [23]. In (1), E{-} is the expectation operator. Throughout
this paper, we will use o2 to evaluate the performance of MCP.

Fig. 2 shows the most general form of MCP. Let (z,y) be
spatial coordinates. The prediction signal §(z,y) is obtained
from the samples of the reconstructed, previous frame r(z, y).
MCP with fractional-pel accuracy is not straighforward, since
r(z,y) is only available at

(zs,ys) € 11, @
where II is the set of sampling positions. Throughout this
paper, we assume an orthogonal sampling grid with horizon-
tal and vertical sampling intervals X and Y. For motion-
compensation, r(z,y) can be thought of as being interpolated

where f(z,y) is the interpolation filter kernel. Throughout
this paper, space-continuous signals will be distinguished by
the “tilde” from sampled, space-discrete signals. As imme-
diate exception from this notational rule, let us introduce an
estimated displacement (d.(z,y), dy(z,y)) defined over con-
tinuous spatial coordinates (z,y) € R2. The space-continuous
7(x,y) can be warped according to (dx,dy) to yield the
space-continuous signal

Fule,y) = (2 - da(2,9),y — dy(2,9)) ¥ (2,9) € B2,
@
which is then resampled to

rw(z,y) = Fu(z,y) ¥ (z,y) €1I. )

Of course, in a practical implementation, we would not calcu-
late 7(z, y) and 7, (2, y) continuously, but only at the positions
that are required to obtain the resampled signal rw(z,y).
Also, because of (5), (dy(z,y),d, y(z,y)) is only required at
(z,y) € II. In order to improve prediction, we finally convolve
Tw(Z,y) with a space-discrete impulse response f2(z,y) and
obtain the prediction

S ru(@eys)

(zs,ys)€N
~f2(:c—ms,y—ys) v (z,y) ell.

g(xvy) =

©

III. THEORETICAL ANALYSIS OF
MOTION-COMPENSATING PREDICTION

The motion-compensating predictor (Fig. 2) is a linear,
space-varying system. A general analysis is difficult. However,
we can treat MCP with the traditional theory of linear, space-
invariant systems if the estimated displacement (d,, d,) does
not depend on (z,y). Many MCP schemes employ a constant
estimated displacement vector within a block of, e.g., 16 x 16
samples, and our assumption would hold within a block.
Other schemes interpolate a sparse estimated vector field to
obtain a dense, smooth field for motion-compensation. With
the assumption of constant (dz, d ), we neglect effects caused
by spatial changes in the estimated vector field.

Combining (3), (4), and (5) yields

Z fl(m_xs_lizvy_ys—d\y)
(zs,ys)EMN
1(Ts,ys) VY (z,y) €II.

Tw(x’y) =

™
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If (d,,d,) is constant, then (7) is a convolution of 7(x,,ys,)
with a sampled version of the mterpolanon kernel f1 (z,y),
with the sampling phase depending on (d,, d, ). Further treat-
ment is conveniently carried out in the frequency domain by
applying a 2-D band-limited Fourier transform

H(wz’wy) = Z h,(x7y)e—jwm§—jwy}y7
(z,y)€I,
V |w,| <, |wy| <, 8)

where II; is an arbitrary set of sampling positions forming
an orthogonal grid with horizontal sampling interval X and
vertical sampling interval Y. We do not require the origin
(z =0,y = 0) to coincide with one of the samples. Thus, 8)
is slightly more general than the conventional definition of the
Fourier transform (e.g., see [24]). We restrict the region of
support of the Fourier transform to the baseband, and do not
consider baseband replications. This restriction greatly simpli-
fies the following mathematics without sacrificing generality.
With definition (8), we can write (7) as

Ry (weywy) =€~ jus S —juy i (we,wy) - R(wg,wy),

®
where R, (wz,wy) and R(w,,w,) are band-limited Fourier
transforms (8) of r,(, y) and r(z, y), respectively. Fy (wy,wy)

is the Fourier transform (8) of the sampled interpolation
kernel

@y =hzy) ¥ (¢-doy-d,) e

The condition (z — dg,y — dy) € 1I indicates that fi(z,y)
is defined only at positions (z,y), where (z — dy,y — d,)
coincides with a sampling position in the grid II (2), which
is the sampling grid of the reconstructed signal r(z,y). With
a definition of the combined spatial filtering characteristic of
the predictor,

F(wg,wy)

(10)

= Fl(wx,wy) . Fz(wx,wy) ,

1n

we can fully describe the motion-compensating predictor by

S(w,,wy)—e jws % JWVVK F(wz,wy) - R(wg,wy) ,

(12)

where S(w,, wy) is the Fourier transform (8) of 5(z, y).

We now assume that the input video signal s(x,y) has a
power spectral density ®,,(w,wy), and that the current frame
can be predicted up to some residual noise n(x,y) of power
spectral density ®,,(w.,w,) by translating the reconstructed,
previous frame r(z,y) by the true displacement (dy, dy). In
the frequency domain, this signal model is

S(we,wy) = e F 1Y L R(wg, wy) + N(ws,wy)
13)
where S(w.,wy) and N(w,,w,) are Fourier transforms (8) of

s(z,y) and n(z,y), respectively. If we assume that the noise
n(z,y), the signal s(z,y), and the displacement error

Ad
Ad

- (5)- (%)

(14)
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are statistically independent, then the power spectral density
of the prediction error e is

(I)ee(wszy) = <DSS(“-)Z"“‘)!I)
(L4 [F(wg, wy)[*
- 2m{F(wx7wy)P(Wzawy)})

+ P (we, wy)|[Flwaywy)®,  (15)

[23], where SR{-} denotes the real part of a complex number,
and P(wg,wy) is the band-limited 2-D Fourier transform of
the continuous probability density function (pdf) p(Ad,,, Ad,)
of the displacement error (Ad,, Ad,),

Plwg,w,) = P(z,y)edws=/X—jwyy/Y go g
y y Y
z,y

V |we| <, lwy| < 7.

(16)

Interestingly, frequency components of the displacement error
pdf outside the baseband have no influence on the prediction
error power spectrum. By differentiating (15) with respect to
F(wg,wy), it is readily shown that the mean squared prediction
error is minimized at each frequency if F(w;,w,) is a Wiener
filter with frequency response

D, (W:m Wy)
Dy (we, wy) + P (we,wy)
an

The superscript ~ is used to denote complex conjugation.
Wiener filter (17) can be interpreted to consist of two stages:
one is a Wiener filter with respect to the noise n(z,y);
the other one is a Wiener filter that takes into account the
inaccuracy of the displacement estimate.

Equation (15) allows us to study the influence of the
displacement error pdf on the prediction error variance (1),
which can be calculated on the basis of Parseval’s relation

1 v s
Uf = 4—7r2-/_1r ‘/_1r Qoo (wz, wy) dwy dwy . (18)

We have evaluated the prediction error variance assuming an
isotropic signal power spectrum

3
w2+w2 7
.(1+ z Y (19)
wo

[23], a flat noise power spectrum

F(wz,wy) = P*(wg,wy) -

2ro?
(I)SS(wszy) = 28
W

2

g

and an isotropic Gaussian displacement error pdf of variance

oXd
Ad? + Ad?
12 exp(— i & ) s (21)
2wo R,

2024
where o2 and o2 are signal and noise variances, respectively,
and wo has been set to correspond to a typical correlation of
0.93 between adjacent samples. Fig. 3 shows the influence of
the displacement error variance 0%, on the prediction error

variance o2 for three variances o2 of noise contained in the

P(Ady, Ady) =
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Fig. 3.  Results of a model calculation showing the influence of mo-

tion-compensation accuracy on prediction error variance for noisy signals.
The “filtering effect” is illustrated by the difference between the “no filter”
and the “Wiener filter” curves. The vertical dashed lines indicate the mini-
mum displacement error variances that can be achieved with the indicated
motion-compensation accuracies in moving areas.

reconstructed picture r(z,y). The curves compare a Wiener
filter (17) to the case “no filter,”

Flwg,wy)=1. (22)

The following observations are important.

* Prediction error variance is generally decreased by more
accurate motion-compensation.

* Beyond a certain “critical accuracy,” the possibility of
further improving prediction by more accurate motion-
compensation is small.

* The critical point is at a high displacement error variance
for high noise variance, and at a low displacement error
variance for low noise variance.

* For low noise, the Wiener filter is more effective for less
accurate motion-compensation than for accurate motion-
compensation

* For high noise, the Wiener filter is more effective for ac-
curate motion-compensation than for less accurate motion-
compensation.

* For accurate motion-compensation, the potential of the
Wiener filter increases with noise level.

Fig. 3 also indicates the minimum displacement error vari-
ance that can be achieved for a given motion-compensation
accuracy in moving areas. Consider a perfect displacement
estimator that always estimates the true displacement. Then,
the displacement error (Ad,, Ad,) is entirely due to round-
ing. In moving areas with sufficient variation of motion,
the displacement error will be uniformly distributed between
+(1/2)BX and +(1/2)BY, where 3 = 1 for integer-pel
accuracy, § = 1/2 for 1/2-pel accuracy, etc. For a grid
with balanced horizontal and vertical resolution, X =Y, the
minimum displacement error variance in moving areas is

52 - BX)”

Ad 12

It turns out that the precise shape of the displacement error
pdf has hardly any influence on the variance of the motion-

(23)
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Fig. 4. Three-stage displacement estimator for fractional-pel accuracy.

compensated prediction error, o2, as long as the displacement
error variance %, does not change. A uniform pdf and a
Gaussian pdf yield essentially the same variances o2.
IV. DISPLACEMENT ESTIMATION WITH
FRACTIONAL-PEL ACCURACY

After the model calculation in the previous section, we
want to measure prediction error variance as a function of
displacement error variance experimentally for actual pictures.
In order to obtain meaningful results, it is very important to use
a displacement estimator that gives both reliable and accurate
results. If the displacement estimator itself is not accurate, we
could hardly improve prediction by fractional-pel accuracy of
MCP.

For our experiments, we have used a displacement estima-
tion algorithm that consists of three stages (Fig. 4). It is based
on the phase correlation technique, first proposed by Kuglin
and Hines [25].

A. Displacement Measurement by Phase Correlation

Large overlapping measurement windows of size 64 x 64
are moved over the picture. Based on the Discrete Fourier
Transform (DFT) [24] S(w.,wy) of a block of the input signal
s(z,y), a frequency-weighted phase array

S(wey wy) - §* 1 (Was wy)
|S(ws, wy) - S (ws, wy)|

V(wz, wy) = W(ws, wy) - 24
is calculated, where S_;(ws, wy) is the DFT of the corre-
sponding block in the previous picture. Again, the superscript
* is used to denote complex conjugation. The inverse DFT of
the phase array ¥(w., wy) is the so-called phase correlation
surface; it can be shown to contain one impulse for each
translatorily moving patch within the measurement window
[26]. The size of each peak indicates the area (or rather the
ac energy) that the patch covers within the window. Phase
correlation can be interpreted as an estimate of the displace-
ment histogram within the measurement window [27). The
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weighting function W (w,, wy) smoothes the phase correlation
surface and suppresses spurious peaks in the case of noninteger
displacements. We used a separable Kaiser window with
a = 2.0 [28]. The predominant peaks in the phase correlation
surface are detected with integer-pel accuracy and passed on
as “candidate displacements” to stage B of the estimator.

B. Segmentation by Candidate Vector Assignment

A candidate vector from the corresponding large phase
correlation measurement window, that provides the best match
for a smaller “block,” is assigned to that block. The size of
these blocks was 16 x 16 in our experiments. The vector as-
signment is done by block matching [1] using the accumulated
magnitude of the displaced frame difference, 3 |DFD|, as a
matching criterion. Unlike conventional block matching [1],
only displacement vectors “suggested” as candidates by stage
A are tested, so that the computational load is greatly reduced
while the result is far more reliable. The 16 x 16 blocks do not
overlap, hence each block is assigned a unique displacement
vector.

C. Displacement Vector Refinement by Search

Stages A and B of the estimator consider only integer
displacements. For a refinement to fractional-pel accuracy,
a block matching search procedure starts with the vectors
from stage B. The matching criterion is again 3 |DFD|,
accumulated over a 16 x 16 block. The search procedure
first considers all combinations of displacements by +(1/2)X
horizontally and +(1/2)Y vertically. Then, starting from the
1/2 pel displacement with minimum 3~ |DFD|, all 1/4-pel
displacements are compared. The procedure is repeated with
displacement step size 2~™ until the desired accuracy of the
displacement estimate is obtained. Samples at fractional-pel
positions needed in the displacement search were computed
using the “sinc-interpolation” described in more detail in
Section V.

A similar combination of stages A and B has been recently
proposed by Thomas [26]. His report also presents an analysis
of the properties of phase correlation, which need not be
repeated here. We have augmented his two-stage procedure
by the third stage for vector refinement. Thomas proposes
to measure fractional-pel displacements already in the phase
correlation stage A. While phase correlation has the potential
to measure displacements with an error much smaller than the
interval between samples, we found that there are problems for
smoothly varying displacement vector fields which are very
common in natural image sequences. If the phase correlation
measurement window covers only one constant displacement,
the phase correlation surface will be a shifted version of the
inverse DFT of the weighting function W(w.,wy). If we
would use no weighting, i.e., W(wy,wy) = 1, the “impulse”
indicating the displacement would be a shifted, sampled sinc-
function with a main-love width 2X horizontally and 2Y
vertically [26]. The weighting function additionally widens
this main lobe. If the displacement varies within the mea-
surement window by small amounts, this will also have the
effect of widening the peak. It is hard, if not impossible, to
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select a number of fractional-pel displacements out of such
a smeared peak. Of course, we could consider all fractional-
pel displacements under a peak as candidate vectors for stage
B; this would, however, be computationally very expensive.
For 1/8-pel accuracy, e.g., it would require 64 times as many
candidate vectors to be tested in stage B than for integer-pel
accuracy.

Fig. 5(d) shows a typical vector field obtained with the
three-stage displacement estimator. Vector fields are smooth
within homogeneously moving regions. The spilling of nonzero
motion vectors into the static background region (“corona ef-
fect”), a typical problem for some other hierarchical schemes,
is avoided. Note that zero-length vectors are not displayed
in Fig. 5(d). With respect to variance of the displaced frame
difference, the estimator outperforms other state-of-the-art
schemes like hierarchical block matching [29] of differential
techniques [30] for a given vector accuracy and block size.

V. EXPERIMENTAL COMPARISON OF VARIOUS SPATIAL
PREDICTION/INTERPOLATION FILTERS

With fractional-pel accuracy displacements estimated by the
three-stage procedure of the previous section, three different
types of spatial prediction/interpolation filters F(w,,w,) were
compared experimentally at different motion-compensation
accuracies.

1) Sinc-interpolation corresponds to the case F(w,,wy) =
1, or “no filter” in Fig. 3. Convolution with fa(z,y) (6) is
omitted in this case. For a horizontally and vertically band-
limited signal, the interpolation kernel (7) would ideally be

z _ sin(rz/X) - sin(zy/Y)
o) = ey Gy

The sinc-interpolation kernel (25) has infinite extent. For a
practical system, we have to approximate (25) by a finite
impulse response. We have cascaded horizontal and vertical
2:1 interpolations with carefully designed 21-tap filters to
calculate samples at fractional-pel positions. Interpolations by
the factors 4:1 and 8:1 were performed by multiple passes
through the 2:1 interpolators.
2) Bilinear interpolation uses the interpolation kernel

(25)

fiw,y) = max{0,1- |';E|} -max{0,1 - |-1y7|} (26)

Again, convolution with fy(z,y) (6) is omitted. Sinc-
interpolation and bilinear interpolation are identical for
integer-pel accuracy of motion-compensation.

3) Wiener filters were computed separately for each esti-
mation accuracy and each source signal. Equation (17) gives
the Wiener filter as a function of signal and noise power spectra
and displacement error pdf. Although this formulation is useful
to understand MCP, it is not a useful formulation for filter
design, since noise power spectrum and displacement error
pdf are usually not known explicitly. We take an alternative
approach here. Let us call r,(z,y) (7) the compensated
reconstructed previous frame c¢(z,y) when a sinc-interpolation
kernel (25) is used in (7). Our task is to find the filter that best
predicts s(z,y) when applied to c(z,y). It is a well-known
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Picture pair TREVOR: (a) current picture, (b) previous picture, (c) frame difference without motion-compensation, (d) displacement vectors estimated

by the three-stage procedure described in the text, (¢) motion-compensated prediction error with integer-pel accuracy, (f) motion-compensated prediction error
with 1/2-pel accuracy, (g) motion-compensated prediction error with 1/4-pel accuracy, (h) motion-compensated prediction error with 1/8-pel accuracy.

result from linear mean-square estimation [31] that the Wiener
filter with frequency response

Flunyy) = gelmss)

D (wy,wy) 27)

minimizes the mean squared prediction error. In (27),
®,.(wy,wy) is the cross spectrum between s(z, y) and c(, ),
and ®.c(w,,wy) is the power spectrum of c¢(z,y). Both
spectra can be measured directly. With the assumption that
the previous reconstructed picture r(z, y) does not differ from
the previous original picture, thus neglecting coding noise,
D o(wy,wy) and D..(wg,wy) have been estimated from the
signal by averaging periodograms of 16 x 16 blocks [24].
This results in 16 x 16 samples of the Wiener filter frequency
response and, after inverse DFT, in an impulse response with a
16 x 16 region of support. The Wiener filter impulse response
typically decays very fast, and most of the 16 x 16 coefficients
are very close to zero. The 16 x 16 impulse response was used
as fo(z,y) in (6), and combined with the sinc-interpolation
described as item 1) in this section.

The variance of the prediction error for the different spatial
prediction/interpolation filters is shown in Figs. 6 and 7 as
a function of motion-compensation accuracy. The prediction
was based on the previous original picture rather than the
previous reconstructed picture 7(z,y), thus neglecting noise
introduced by encoding of the prediction error e (Fig. 1).
We show results for two broadcast TV signals—ZOOM and
VOITURE—and two videophone signals—TREVOR (Fig. 5)
and MISS AMERICA. The source material is described in
detail in the Appendix. For the videophone signals TREVOR
and MISS AMERICA, only moving parts have been consid-

ered both for designing the Wiener filter and measuring the
prediction error variance. Figs. 6 and 7 illustrate the following
observations.

» Compared to integer-pel accuracy of MCP without fil-
tering, prediction error variance can be reduced by more
accurate motion-compensation and Wiener filtering by up
to 5.2 dB for ZOOM, 2.3 dB for VOITURE, 1.8 dB for
TREVOR, and 0.7 dB for MISS AMERICA.

Except for ZOOM, bilinear interpolation is as good as, or
better than, sinc-interpolation.

* For the broadcast TV signals ZOOM and VOITURE,
MCP with 1/4-pel accuracy is certainly sufficiently ac-
curate for a practical coder.

¢ For the videophone signals TREVOR and MISS AMER-
ICA, 1/2-pel accuracy seems to be a desirable limit.

e The curves in Figs. 6 and 7 qualitatively correspond to
the model curves in Fig. 3. The measurement results can
be explained by the theory presented in Section III.

For the videophone signals and 1/2-pel accuracy of motion-
compensation, we have simplified the Wiener filter to a sep-
arable filter that is suitable for a hardware realization. This
filter uses the coefficients (1/8,6/8,1/8) centered around
the estimated motion trajectory, if the estimated displacement
component is integer. If the estimated displacement requires
a half-pel-shift, the coefficients (1/16,7/16,7/16,1/16) are
used. This filter, denoted as (1,2,7,12,7,2,1), is compared in
Table I to bilinear interpolation and to Wiener filtering. The
additional gains over bilinear interpolation are rather small.

Fig 5(e)—(h) shows the motion-compensated prediction er-
ror e(z,y) for TREVOR at different accuracies of MCP.
For this example, sinc-interpolation was used. This series of
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axis “motion-compensation accuracy 3” is such that 3 = 1 corresponds to
integer-pel accuracy, 3 = 1/2 corresponds to 1/2-pel accuracy, etc.

pictures provides an intuitive explanation of the curves in
Figs. 6 and 7. Once MCP with a certain critical accuracy
has been applied, the motion-compensated prediction error
contains mostly components that cannot be further reduced by
more accurate motion-compensation. The signal model “con-
stant displacement within a block™ is not sufficient to describe
all signal changes occurring from one frame to the next. There
is a variety of effects that limit the efficiency of MCP, most
of which can be discovered in Fig. 5(e)—(h). A meaningful
displacement does not exist where background is uncovered.
There can be spatial resolution changes due to zoom, varying
distance between camera and object, or temporal integration
of the camera target. The apparent brightness of a surface, in
general, varies when any of the angles between surface normal,
light source, and observer changes, or when shadows are cast
on the surface. Problems also occur at object borders, where
displacement is spatially rapidly varying, or with rotational
movements. In addition to all this, there might be shortcomings
of the camera that introduce noise and aliasing. All these
effects contribute to the residual prediction error e(z,y) that
is encoded and tranismitted in the motion-compensating hybrid
coder. In order to further reduce this residue in the future,
we will have to use much more elaborate models than those
underlying MCP.

VI. CONCLUSION

This paper studies the effect of fractional-pel accuracy on
the efficiency of a motion-compensating predictor in con-
junction with various spatial interpolation/prediction filters.
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TABLE 1
PREDICTION ERROR VARIANCE FOR MOVING AREAS, COMPARISON OF INTERPOL-
ATION WITH THE FILTER (1,2,7,12,7,2,1) DESCRIBED IN THE TEXT WITH
BILINEAR INTERPOLATION AND WITH WIENER FILTERING. MOTION-
COMPENSATION 1S PERFORMED WITH 1/2-PEL ACCURACY.

Bilinear Filter Wiener
Signal interpolation  (1,2,7,12,7,2,1) filter
TREVOR 97.6 92.4 89.5
MISS AMERICA 147.5 146.5 1425

MCP has been analyzed by relating the prediction error
power spectrum to the probability density function of the
displacement error. Model calculations explain the “accuracy
effect,” the “filtering effect,” and a “critical accuracy,” beyond
which the possibility of further improving prediction by more
accurate motion-compensation is small.

The model calculations were confirmed experimentally
by comparing sinc-interpolation, bilinear interpolation, and
Wiener filtering for fractional-pel accuracy MCP. An improved
algorithm for reliable displacement estimation with fractional-
pel accuracy was used in the experiments. In three stages,
it employs phase correlation followed by candidate vector
assignment and a vector refinement to fractional-pel accuracy.

Signal components that do not obey the paradigm of trans-
latory motion limit the performance of MCP. It was found
that, for a motion-compensation block size of 16 x 16 and
typical broadcast TV signals, 1/4-pel accuracy appears to be
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sufficient; while for videophone signals, 1/2-pel accuracy is
desirable. For videophone signals with bilinear interpolation,
the filtering effect is partly exploited in addition to the accu-
racy effect. A new separable filter, that gives a slightly better
prediction for 1/2-pel accuracy, has been proposed.

APPENDIX
PICTURE MATERIAL USED FOR THE EXPERIMENTS

ZOOM: Two fields out of a broadcast TV sequence
(DOLLAO kindly provided by Deutsche Thomson-Brandt),
sampled at 13.5 MHz with line-interlace. The two fields are
taken 40 ms apart. The processed window is 128 lines x 256
pels and shows a building and parts of a ship with rich detail.
The movement is generated exclusively by camera zoom.

VOITURE: Two fields 20 ms apart from a broadcast TV
sequence (VOITURE kindly provided by CCETT) sampled
at 13.5 MHz with line-interlace. Mainly horizontal motion of
rigid objects due to camera pan, motion of the car, and motion
of the gate. Contains much uncovered background. Processed
window: 256 lines x 512 pels.

TREVOR: A videophone sequence (TREVOR kindly pro-
vided by British Telecom Research Laboratories) has been
converted to a format of 7.5 noninterlaced frames per second
with 288 lines x 352 pels. Field numbers 10 and 11 of this
sequence have been processed. The processed window is 256
lines x 256 pels. The picture pair contains motion up to 9
lines vertically and up to 6 pels horizontally.

MISS AMERICA: A videophone sequence which again has
been converted to a format of 7.5 noninterlaced frames per
second with 288 lines x 352 pels. Field numbers 5 and 6 of this
sequence have been processed. The processed window is 256
lines x 256 pels. The picture pair represents moderate motion
combined with a significant change in facial expression.
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