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Rate-Distortion Performance of DPCM
Schemes for Autoregressive Sources

NARIMAN FARVARDIN, STUDENT MEMBER, IEEE, AND JAMES W. MODESTINO, SENIOR MEMBER, IEEE

Abstract— An analysis of the rate-distortion performance of differential
pulse code modulation (DPCM) schemes operating on discrete-time auto-
regressive processes is presented. The approach uses an iterative algorithm
for the design of the predictive quantizer subject to an entropy constraint
on the output sequence. At each stage the iterative algorithm optimizes the
quantizer structure, given the probability distribution of the prediction
error, while simultaneously updating the distribution of the resulting pre-
diction error. Different orthogonal expansions specifically matched to the
source are used to express the prediction error density. A complete
description of the algorithm, including convergence and uniqueness proper-
ties, is given. Results are presented for rate-distortion performance of the
optimum DPCM scheme for first-order Gauss—Markov and Laplace—
Markov sources, including comparisons with the corresponding rate-distor-
tion bounds. Furthermore, asymptotic formulas indicating the high-rate
performance of these schemes are developed for both first-order Gaussian
and Laplacian autoregressive sources.

I. INTRODUCTION

HE EVER-GROWING DEMAND for transmission

and storage of data necessitates more efficient use of
existing transmission and storage facilities. A data com-
pression system is any scheme that operates on source data
to remove redundancies so that only those values essential
“to reproduction are retained. Typical source signals gener-
ally contain two types of redundancies: First, there is
redundancy due to the high serial correlation in source
outputs. This redundancy, which is concomitant with a
nonuniform power spectral density, can be reduced consid-
erably through the use of predictive encoding schemes such
as differential pulse code modulation (DPCM). Roughly
speaking, the source signal can be conceived as having two
parts. One part is predictable relative to the transmitted
sequence and hence conveys no useful information; the
other part (the prediction error) is unpredictable, and since
it uniquely determines the signal, it contains the useful
information. A DCPM encoding scheme attempts to dis-
card the predictable part, because it can be reproduced at
the receiver, and encodes only the unpredictable portion by
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using a zero-memory quantizer. The second type of re-
dundancy is due to the nonuniforim probability distribu-
tion of the encoded signal. That is, the discrete levels at the
output of the DPCM quantizer do not occur with equal
probabilities. This type of redundancy can be removed
through the optimal design of the quantizer subject to an
entropy constraint, and it generally requires entropy cod-
ing of the quantizer outputs by means of a buffer-instru-
mented, variable-length coding scheme.

Because the quantizer is nonlinear, exact analysis of
predictive coding schemes is difficult. O’Neal [1] analyzed
the mean-square performance of DPCM systems for sta-
tionary Gauss—Markov processes on the assumption that
the prediction error distribution is Gaussian. Others have
performed an analysis of the DPCM system based on the
assumption of decomposability of the prediction error into
the overload and granular error {2],[3].

In contrast to these approaches, Fine [4] performed an
exact analysis of the mean-square performance for a delta
modulation system operating on a sampled Wiener process.
Hayashi [6] extended this result to DPCM systems with an
equi-step quantizer. Masry and Cambanis [11] provided an
exact analysis for delta modulation of the continuous
parameter Wiener process. To the authors’ knowledge these
are the only exact analyses concerning DPCM system
performance.

Slepian [21], Arnstein [5], Hayashi [7], and Janardhanan
[8], all inspired by Davisson’s idea [19],[20] of obtaining a
Hermite polynomial series approximation for the distribu-
tion of the prediction error, have reported various results
regarding the optimality of DPCM systems in a minimum
mean-square error sense for Gauss—Markov processes.
Gibson and Fischer [38], on the other hand, have studied
an optimal alphabet-constrained data-compression scheme
that entails the DPCM system as a special case. However,
little work has been done in characterizing the optimum
rate-distortion performance of DPCM schemes. While there
has been some limited work in approximating the optimal
rate-distortion performance for Gaussian sources at high
rates [9],[33], there has been no complete analysis for a
wide range of rates even for Gaussian sources.

In this paper we present a study of the rate-distortion
performance of DPCM schemes operating on autoregres-
sive discrete-time sources. A novel iterative algorithm is
developed for design of the DPCM quantizer to minimize
the mean-square distortion subject to a constraint on the
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Fig. 1. Block diagram of generic predictive coding scheme.

first-order output entropy. Also, we use different or-
thogonal series expansions to approximate the distribution
of the prediction error. These expansions are specifically
matched to the distribution of the innovation sequence
generating the autoregressive process. Results on the rate-
distortion performance of DPCM schemes employing uni-
form-threshold quantizers for first-order Gauss—Markov
and Laplace—Markov sources are presented. Also, asymp-
totic results for high rates are developed for both sources.

The organization of this work is as follows. In section II
we describe a general predictive coding scheme, which is
then restricted to the special case of DPCM. Then we
describe certain properties of DPCM encoding schemes in
Section III. In Section III we also carefully formulate the
problem of optimal encoder design and determine the
necessary conditions for optimality. In Section IV two
algorithms for optimally designing DPCM encoders are
described. Section V is devoted to a thorough study of the
prediction error distribution and its evaluation through
orthogonal series expansion methods. In Section VI we
present numerical results demonstrating the efficacy of
optimum DPCM schemes. In Section VII asymptotic re-
sults are provided for high rates, together with techniques
for bounding the rate-distortion function. These latter tech-
niques are particularly useful for characterizing the perfor-
mance of non-Gaussian sources. Finally, in Section VIII a
summary and suggestions for future research are included.

II. PRELIMINARIES AND NOTATION

In this section we briefly describe a generic predictive
encoding scheme operating on an Mth-order autoregres-
sive source. We obtain the optimum system structure for a
fixed quantizer, mention the impediments in analysis and
implementation of the optimum system, and then reduce
the system to the suboptimum DPCM scheme for further
analysis.

We assume that the signal to be encoded can be modeled
as an Mth-order time-discrete autoregressive process de-
scribed by the recursion

1,2,---, (1)
where p,, p,,- - -, pae are the autoregression constants and
{W,} is a zero-mean sequence of independent and identi-
cally distributed random variables possessing common
variance o2, Furthermore, we assume that the initial state
(Xo X _15- -+, X_pp41) is specified and we are only inter-
ested in the source outputs for n > 1.

M
Xn = Z men—m + I/Vn’ n
m=1

This model has been chosen both because it is often a
good mathematical model for real data (e.g., speech and
images) and because it provides a well-understood stan-
dard for comparison [4]-[9], [25].

The block diagram of a generic predictive coding scheme
is illustrated in Fig. 1. Upon observing the transmitted
sequence Yi, Y;,- -+, Y, _;, the predictor estimates the value
of the source signal at time instant ». This estimate X,
which can also be made at the receiver (in the absence of
channel errors), is then subtracted from the input X, to
obtain the sequence E, = X, — X, called the prediction
error. The sequence { E,}, which contiins (almost) only
“new” information about { X, }, in then coded and trans-
mitted as the sequence {Y, }. o

Let us assume that &, is the smallest o-algebra gener-
ated by Y,,Y,, - -, Y,. Then the casual least mean-square
estimate,! called the predicted estimate, of X, upon observ-

ing Y3,Y,,---,Y,_; is given by
X; = 0. (2a)
while

X =E{X|o,_,}, n=23,--, (2b)

where E{-|-} denotes conditional expéctatioﬁ given a
o-algebra [10]. R
Let us denote by X, the instantaneous estimate of X,
derived by observing Y;,Y,,- -+, Y, given by
X, =E{(X,|%,), n=12,---.

Combining (1), (2), and (3) yields

(3)

A

M
X: E{ Z men—m + I/Vrll‘jin—l}
m=1

M
Z me{ Xn—ml‘ﬂn—l} + E{u/n"Mn—l}
m=1

M
= plj(n—l + Z me{Xn—MI‘Mn—l}’ n=23,.--.

_ @

The last equation is a direct consequence of the fact that
{W,} is a zero-mean and independent sequence. Further-
more, we can write
X, = E{X} +E|,}
= E{X]|#,} + E{E,|,},

n=1,2---. (5

YThroughout this work, we confine ourselves to the squared-error
distortion criterion.
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Fig. 2. Block diagram of DPCM coding system for M th-order autoregressive source.

But {7,} is a nondecreasing sequence of o-algebras
(.e., o, , C,), and X}, by definition, is an 57, _;-mea-
surable random variable [10]. Therefore, X; is &/, -mea-
surable as well, and (5) reduces to

X =X'+E{E|«)}, n=12---. (6)

Unfortunately, the system described by (4) and (6) is

extremely difficult—if not impossible—to implement. The
conditional expectations in (4) and (6) are the main draw-
backs here because they cannot be easily computed.
- Our main objective is the study of the quantizer struc-
ture and its resulting effect on overall system performance.
Thus, to make the problem somewhat more tractable, we
force the predictor to have a simple structure.

Let us suppose that the prediction error sequence { E,, }
is “nearly” independent. This statement, although some-
what heuristic, is meaningful from a practical point of
view, especially when the system is optimized (as we shall
describe later) for operation at high rates. If this assump-
tion holds, then the transmitted sequence {Y,,} will also be
nearly independent. This assumption implies that [12]

E{ Xn—ml‘dn'l} = Xn~m’

and

nxm,1<m<M, (7)

E{E,+,} =E{E,Y,}, (®)

We assume that the prediction error is coded by means
of a zero-memory N-level quantizer described by

qN(x)=Q1’ xE(Tl—l’Tl]’ I=1’2""’N3 (9)

where T, T1,- - -, Ty, and Q;,Q,,- - -, @ are the threshold

levels and' the quantization levels, respectively. (To the

extent possible, we use notation identical to that of [13].)
Then we can show, in Theorem 1, that

n=1,2---.

E{EY,} =Y, n=12;, (10)
provided only that the quantization levels are chosen opti-
mally.

With these simplifications, (4) and (6) can be written as
M
Xr=Y p.X,_,. n=23,--, (11a)
m=1
and
X,=Xt+v, n=12-- (11b)

Equation (11) describes the simplified version of our
predictive coding scheme. This scheme, which is well known
as differential pulse code modulation, has been widely
discussed in the literature [1]-[9]. The block diagram of
this system is illustrated in Fig. 2. In the rest of this work
we will restrict attention to this scheme.

Our goal is to design the quantizer in such a way that the
DPCM coding scheme is optimized in a rate-distortion
theoretic sense. More specifically, we wish to minimize the
overall average distortion, while the transmission rate is
kept below a prescribed level. In the following section, we
will establish certain properties of the DPCM scheme
under consideration and formulate the optimum design
problem.

PROPERTIES OF THE DPCM SCHEME AND
PROBLEM FORMULATION

IIL

We begin this section by substantiating (10) through the
following theorem.

Theorem I: Let us assume that g, is an N-level
zero-memory quantizer with input thresholds 7, < T} <

- < Ty and output levels Q,, Q,,- - -, Q that are chosen
such that @, I=1,2,---, N is the center of probability
mass of the interval (T,_,, T}]. Then, if { E,} and {Y,} are
the quantizer input and output sequences, respectively, and
E{E,}=E{Y,}=0,n=12,---, we have

E(E)Y,) =Y, n=12.
Proof: First note that
E{E\Y,=Q,} = E{E|T, , <E,< T},
/=1,2,---,N. (12)
But, by assumption,
Q,=E{E,|T_<E,<T}, I=
Therefore
E{E|Y,=Q/}=Q,
which proves the theorem.

1,2,--+,N. (13)

I=1,2,---,N, (14)

Recall, that for the case of a zero-memory quantizer
driven by a memoryless source, the amount of information
delivered by the output process about the input process
equals the entropy of the output process [26]. The follow-
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ing theorem establishes a similar relationship in predictive
quantization schemes.

Theorem 2: In the predictive coding scheme described
by (11)’ if XN & (Xl, X2" T XN) and YN &
(Y1, Y,, -+, Yy), then

lim
N- oo

SNV =H V), ()

where H_(Y') is the entropy rate of the {Y,} sequence [27].
Proof: We have
I(XV;¥V)=H(YN) — H(YV|xV). (16)

(Here, we are using the same notation as in [27].) But there
is a one-to-one relationship between XV and EV £
(Eq, E,,- -+, Ey). Furthermore, EV uniquely specifies Y.
Therefore, given X7, there is no uncertainty concerning
Y¥, and thus

(XY, YyN)y=H(Y"). (17)
Dividing through by N and passing to the limit on N
yields the desired result.

In regard to the quantization error, (11b) can be used to
show that

¢, 2E,-Y,=X,-X, (18)

where £, is the error incurred solely by the quantization
process.? This is interesting, since it implies that to mini-
mize the overall reconstruction error, it suffices to mini-
mize the quantization error.

At this point we can state the problem more precisely.
We wish to design an N-level quantizer for the DPCM
scheme such that the overall average squared-error distor-
tion—or, equivalently, the average quantization error—is

minimized, while the entropy rate at the quantizer output is -

held below a perscribed value, say H,. Farvardin and
Modestino [13] have studied a similar problem for a
zero-memory quantizer driven by a memoryless stationary
source.

In the present situation, unfortunately, the probability
density function (pdf) of the quantizer input (i.e., the
prediction error) is not known. The following discussion
will provide some insight as to how this pdf can be
calculated and will point out the associated difficulties.

Let us first note that

M
En Z men——m + I/Vn -

(19)

Equation (19) implies that the prediction error sequence
{E,} is also a Markov process of the same order as the
input process { X, }. We shall confine ourselves, hereafter,
to first-order processes. Those conversant with the theory

m=1

M .
= Z pm[En—m - qN(En—m)] + I/Vn

m=1

2Hereafter, for economy of notation, we do not indicate the time
instants for which the equations hold with the presumption that they can
be understood from the context.
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of Markov processes will recognize that any M th-order
Markov process can be represented by a first-order M-
dimensional Markov process.

Using the Chapman-Kolmogorov equation for the pro-
cess defined by (19) with M =1 and p £ p,, we obtain

Py (x) = f_waW[x = o(y = an(W)] Pp, (») &,

(20)
in which P (-) and Py,(-) designate the pdf’s of E, and
W, respectively.

To be able to design the quantizer optimally, we require
knowledge of the steady-state pdf of the sequence { £, },
which will be denoted by P.(-). A legitimate question,
obviously, is whether such a steady-state pdf exists.

Gersho [14] was the first to study this issue in delta-mod-
ulation systems. Based on a theorem of Doob [15], he
proved that under certain conditions on the source distri-
bution, the joint distribution function of the (X,, X,)
process converges to a unique stationary distribution, re-
gardless of the initial condition X, and the quantizer
stepsize. This, in turn, implies the convergence of { E,} in
distribution. Goldstein and Liu [16] subsequently extended
Gersho’s results to adaptive DPCM (ADPCM) systems in
which the quantizer was taken to be an N-level uniform
quantizer whose stepsize varies in time according to a
well-described rule. Their results, of course, include non-
adaptive DPCM systems as a special case.

More recently, Kieffer {17] has established a stronger
type of convergence for predictive quantization schemes.
Specifically, he has shown that under certain conditions the
triple process { X,,Y,, X,} is stochastically stable in the
sense that the sequence {(1/N)LV_, (X2, ¥*, X*)} con-
verges almost surely for every bounded function f that is
continuous in the first two variables and measurable in the
third. Here X* £ (X, X, .1, ")

These convergence arguments are useful in establishing
the desired result that the sequence of functions { Py (+)}
defined by (20) converges to a unique function Pg(-). In
fact, if we write (20) in operator notation as

Pe, = Tpg, ,» (21)

then Goldstein and Liu show that 1), assuming that prob-
ability functions exist, there exists a unique function Pg(-)
such that {16, Theorems 5 and 6]

Pe= Tpg,

and 2) pg () converges to pg(-) [16, Theorem 9].
Equation (22) is equivalent to the following integral
equation:

pe(x) = [~ pylx—o(y = ax(O)] pe(3) d. (23)

— 00

(22)

Therefore, for a fixed quantizer ¢,(+), the limiting margi-
nal pdf of the prediction error can be obtained from the
above integral equation. Equation (23) reveals the explicit
dependence of the steady-state pdf p.(-) on the quantizer
structure gy(-). On the other hand, to determine the
optimum quantizer, the marginal pdf of the prediction
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error is required. This results in a complex interdependence
between the pdf of the prediction error and the quantizer
structure. Indeed, this is the main difficulty in obtaining
the optimal quantizer.

Recall that we intend to design the quantizer subject to a
constraint on its output entropy rate. To calculate the
entropy rate at the quantizer output, however, we need to
have the N-fold probability density function of the se-
quence { E,}. Due to the myriad of difficulties associated
with this, we restrict ourselves to the first-order entropy at
the quantizer output. This clearly results in a suboptimum
system. However, at high rates, where the prediction error,
and hence the quantizer output, are highly uncorrelated,
the entropy rate is approximately equal to the first-order
entropy.

The problem of quantizer design can now be stated as
follows. We wish to find an N-level quantizer g% (-) that
minimizes the average squared-error distortion incurred in
the quantization operation while the first-order entropy at
the quantizer output is held below a certain value. The
average distortion and output entropy are given by

N
D=% [ (x-0) pe(x)dx (24)
1=1"T11
and
N
H= - lzlp,logzp, b/sample, (25)

respectively, where pp(-) is the solution to the integral
equation given by (23) and p, is defined by

T,
p;= f ' PE(X) dx,

71

/I=1,2,---,N (26)

Unfortunately, because of the particular type of depen-
dence of pp(-) on gu(-), necessary conditions for the
optimality of the quantizer cannot be expressed in a con-
cise closed form. However, by looking at the problem from
a slightly different perspective, we can obtain a more
appealing formulation of the problem, which leads to an
algorithmic approach for quantizer design.

More precisely, we seek and optimum N-level quantizer
q%(+) and a probability density function p}(-) or, equiv-
alently, a couple (g%, p¥) such that the following two
conditions are simultaneously satisfied.

Condition 1: g%(-) is an optimum N-level quantizer with
entropy constraint H, for a memoryless source with sta-
tionary marginal pdf p¥(-).

Condition 2: p¥(-) is the solution to integral equation
(23), with gy = g3}

Let us denote by D(qy; pg) the average distortion in-
curred in a DPCM coding scheme possessing an N-level
quantizer g,(-) and a steady-state prediction error pdf
Ppr(+). Then the optimum (rate-distortion theoretic) perfor-
mance attainable by an N-level DPCM coding scheme is
given by

Dy(H,) = (27)

me(‘]N’ PE)
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where € is the collection of all couples (g,; px) satisfying
Conditions 1 and 2 simultaneously.

" In the following section, we describe two algonthmlc
methods for obtaining D,(H,). Essentially, these al-
gorithms work by iteratively applying Conditions 1 and 2.
In Condition 1 we have to design an optimum entropy-
constrained quantizer for a memoryless source. We do not
elaborate on this; details, including specific algorithms, can
be found in [13]. In Condition 2 we need to solve the
integral equation (23). Section V is devoted to this issue.

IV. ALGORITHMS

Recall that ih obtaining the optimum quantizer, the
quantities of interest are the average distortion and the
quantizer output entropy, both of which are functionals of
the prediction error pdf pz(-) and the quantization map-
ping g,(-), with a specific interdependence between p.(-)
and gy (*).

The algorithm used to solve for the optimum quantizer is
an iterative method in which the quantizer is optimized at
each iteration and then the pdf of the prediction error is
updated. This algorithm is described in the following steps.

Algorithm 1

1) Choose an initial N-level quantizer ¢{P(-) with en-
tropy constraint H,, and set i = 0.

2) Set i =i+ 1; for the fixed quantizer q{’(-) solve
(23) to find the steady-state pdf p{(-).

3) For the fixed pdf p{’(-) use the quantizer design
algorithm to obtain a quantizer g{*"(-) subject to
entropy constraint H,.

4) If the difference in the quantizer structure® in two
consecutive iterations is greater than some prescribed
small € > 0, go to 2). Otherwise, halt with p.(-) and

gn(+) equal to p%(+) and g¥(-), respectively.

In step 3), either of the algorithmic methods described in
[13] can be used to obtain the optimum quantizer.

Let us note that in solving (23) at each step of Algorithm
1, we calculate the steady-state pdf of the prediction error.
Another approach, which is a slight modification of Al-
gorithm 1, develops a sequence of quantizers evolving in
time ultimately converging to the optimum quantizer. This
approach is presented in the following.

Algorithm 2

1) Choose an initial N-level quantizer ¢{’'(-) with en-
tropy constraint Hy; set p@(-)=p,(-)and i =0
2) Set i =i+ 1; for the fixed quantizer g{’(-) use

3By the difference in the quantizer structure in two consecutive itera-
tions we mean
N-1
Y e -1+ Z 1@ — QF~Y|, where T and Qf,
=1 Co=1
are the /th threshold and quantization levels, respectively, at the ith
iteration.
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P = Tp{i~ to find p{(-). Here T is the operator
defined in (21).*

3) For the fixed pdf p{’(-), use the quantizer design
algorithm to obtain a quantizer g{*(-) subject to
entropy constraint H,,.

4) If the difference in the quantizer structure in two
consecutive iterations is greater than some prescribed
small € > 0, go to 2). Otherwise, halt with p.(-) and
gy(-) equal to p%(-) and gf(-), respectively.

The main drawback in implementing these algorithms is
the inherent difficulty in calculating the pdf of the predic-
tion error—that is, step 2) of either algorithm. In the
following section, we describe a method for calculating the
pdf of the prediction error and point out the associated
difficulties.

V. DISTRIBUTION OF THE PREDICTION ERROR

We now proceed to calculate the marginal pdf of the
prediction error assuming that the quantizer is fixed. Equa-
tion (19), with M =1 and p,; = p, can be written as

E,=W,+ p§,_, (28)
where £, is independent of W,, m > n. Denoting the

characteristic function (chf) of a random variable X by
®,(-), we can write

O (z) = @y (z) - @, (pz), (29)
and for the steady-state situation
Dp(z) = @5 (2)Pe(pz). (30)

The chf ®,(z) of the quantization error is given by

@ (2) = L e [" epy(x)iy(x) dx,  (31)

— o0

where I,(-) is the indicator function of the interval
(T,_,, T,]. Upon defining the Fourier transform of I)(-) by

w() 2 " e n(x)dx,  1=1,20,N, (32)

and using (31), we can write (30) as

®,(z) = (I)W(z)[ ; e—jsz'(q)E*\Pl(Pz)) . (33)

in which * designates the convolution operation.

Equation (33) is the generic form of the functional
equation describing ®;(-). The integral equation (23), or
its frequency domain equivalent (33), are both extremely
difficult to solve, except in special cases. For N = 2 with
0, = —Q; = aand T; = 0 (ie., delta modulation), (33) is
equivalent to

$.(z) = @, (2)[27®,(pz) cosapz + 20,(pz) sinapz],
’ (34a)

“In Algorithm 2, the iteration index i plays an identical role as the time
index n in (21).
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where ®.(-) denotes the Hilbert transform [18] of ® ()
and is described by’

P,

&,(z) =PV f: —TO;\—) da. (34b)

z

For the special case of p =1 and N = 2, Fine [4] has
solved (33) for ®,(-) using Wiener-Hopf factorization
techniques. Later, Hayashi [6] proved a very useful theo-
rem that relates the pdf of the prediction error in a DPCM
scheme with an N-level, symmetric, and uniform quantizer
to that of a two-level scheme. Therefore, if attention is
restricted to uniform quantization, it suffices to find the
solution for a two-level quantizer.

Unfortunately, for p # 1, which is most interesting in
many practical situations, techniques for explicit evalua-
tion of the prediction-error distribution have not yet been
developed. Therefore, one must resort to efficient numeri-
cal methods to compute this quantity. The idea of using
orthogonal series expansions for computing the prediction
error distribution was apparently first suggested by Davis-
son [19],[20]. His suggestion was then followed up by
Slepian [21], Arnstein [5], Hayashi [7], and Janardhanan
{8]. Each of these works considered a Gaussian input and a
Hermite polynomial expansion for the pdf of the predic-
tion error. Arnstein’s work [5] is most relevant to the
present study. Armstein, however, does not attempt to
optimize the system in a rate-distortion theoretic sense.
Instead, he devises an algorithm (similar to Algorithm 2 of
this paper) by which the quantizer is designed only to
minimize the average squared-error distortion for a fixed
number of quantization levels.

In what follows we consider Gauss—Markov and
Laplace—Markov sources. For each source we use a “suit-
able” orthogonal expansion that is matched to the distribu-
tion of the innovation sequence generating the source and
that therefore approximates the prediction error density
with a small number of coefficients in the expansion.

A. Gauss—Markov Process

The Gauss—Markov process is defined according to (1)
with M =1 and p, = p, while we take {W,} to be a
zero-mean sequence of Gaussian random variables with
variance o2, = 1. It turns out that, under appropriate
initial conditions, { X} is a stationary zero-mean Gaussian
random process with variance 62 = 1/(1 — p?).

Now consider the Gram-Charlier series expressing the
prediction error pdf p (x) in terms of Hermite polynomi-

als [22] by
pe(x)=g(x) X «PH,(x), —o0 <x<oo,
k=0

(35a)

5The Cauchy principal value of an integral is defined by
PV[" f(x)dx= lim [® f(x)ax.
— o0 R—o0Y—R
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where g(x) is the standard normal pdf given by

1 2
x)= e /2 ~o0 <x<o0, (35b
8(x) = = (350)
H, (x) is defined by
(=1 d*g(x)

H/(x)=-—F"T——"""%, k=0,1,---, (35¢
k( ) g(x) dx" ( )

and (where we assume d%(x)/dx® = g(x))

al(cn)—%le pE(x)H (x)dx k=032>"'~

(35d)

It is well known that the sequence {H,(x)} is or-
thogonal over the interval (—oo,00) with respect to the
weighting function g(x). That is,

/ g(x)Hy(x)H/(x) dx = k'8,

— o0

k,1=0,1,--+,
(36)

where §,, is the Kronecker delta function.

In (35a) the unknowns are the coefficients a{®, k =
0,1, ---. In what follows we obtain a recursive formula
describing the expansion coefficients at time instant r in
terms of those at time instant » — 1.

Let us replace py _ (y) in (20) by its series expansion.
Then

o

Pe(x)= % alﬁ"“l’f_zpw[x —o(y = av(M)]

-g(»)H (y)dy, (37)

and therefore, the expansion coefficients at the nth time
instant are given by

afP= ¥ 4, @D, [=0,1,--, (38)
k=0
where
1 0 [~e)
Ae=73[ [ pulx—e(y = av(»)]
-g(y)H/(x)H,(y)dxdy, 1,k=0,1,---.

(38b)

Note that 4, , is independent of time, and hence once
A4 ,k=0,1,--- are calculated, we can evaluate the
a{™ recursively according to (38a) for all time instants.

In Appendix A we give a simplification of the double
integral in (38b). Equation (38a) is, in effect, an infinite
matrix multiplication. For numerical computations, how-
ever, it is necessary to consider a truncated version of
(38a). We shall elaborate on this in the next section.

B. Laplace—Markov Process

The stationary Laplace-Markov process is described in
[36]. By this we mean a first-order Markov process with a
Laplacian marginal distribution, which is a special case of
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(1) with M = 1 and p, = p. First we determine the density
of the process {W,} generating the Laplace-Markov pro-
cess.

Upon taking chf’s in (1), we have

Dy(z) = x(pz) @y (2), (39)

in which ®,(-) and ®,,(-) denote the characteristic func-
tions of X, (in steady state) and W,, respectively. But if

px(x) = %e""‘, ~0 <x<o0,  (40a)
as assumed, we have
@y(z) = - 1 ~w<z<o. (40b)
Note that ®,(z) # 0, and hénce solving for ®,(z),
8,(:) = LEEE - (1- ), (an)
and thus
pw(x)=(0- pz)%e""‘ +0%8(x), —o0 <x<o0.
(41b)

That is, { W, } represents a source generating a random
variable whose value is either zero with probability p* or
Laplacian distributed with probability (1 — p?). Here, again
under appropriate initial conditions, the process { X, } is a
stationary zero-mean Laplacian process with variance o?
=2

The significance of studying Laplace~Markov sources is
the observation, made by several researchers (e.g., [23]),
that speech signals possess a marginal density reasonably
close to a Laplacian density.

In this case we can use Laguerre polynomials [24], for a
series expansion of the prediction error pdf. The reason for
this choice, which will become clear in the next section, is
that Laguerre polynomials are orthogonal with respect to
an exponential function (0, c0). More specifically, we can
write

pe(x) = 10x) T ALy (x),

where

0<x<o, (42a)

(x)=e", (420b)

Here, the kth order Laguerre polynomial L,(x) is defined
for x = 0 by

Li(x) = k‘l( )d k(xkl(x))

0<x < o0.

k=01,---,
(42¢)

k=0,1,---.
(424)

The orthogonality properties of Laguerre polynomials rela-
tive to an exponential function on (0, o) imply

‘/.Owe_ka(x)L[(x) dx = 8/6[‘

B = [ i () L(x) d,

(43)
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In what follows, we assume that the quantizer possesses
old symmetry. With this assumption, it is easy to show that
Pe(x), n=1,2,--, has even symmetry, and hence the
integral in (20) can be written as an integral over (0, o) for
which the Laguerre expansion is valid. That is, (20) can be
written as

pe(x) = fow{pw[x —o(y = an(»)]

+PW[x + P(.V - ‘IN()’))]}PE,,_I()’)dJ’- (44)
Now expanding p; (y) by means of (42a) yields

pe(x) = EOB}(”‘”wa{[pw[x —o(y = 4,(»))]

+pwlx +0(y —anONIHO)L(p) dy, (43)
and again using (42d) implies

M= 3 B, BV, [=0,1,---, (46a)
k=0

where

B .= j(;oo‘/(;w{PW[x - P(y - ‘IN()’))]

tpwlx+ 0y - eI
A(y)L(x)L,(y)dxdy, 1,k=0,1,---. (46b)

Equation (46a), analogous to (38a) for the Hermite series
expansions, provides the recursive formula for updating the
Laguerre series expansion coefficients. In Appendix B a
simplification of the double integral in (45b) is given.

In the following section, we will use the algorithmic
procedures described in Section IV and the above expan-
sion methods to investigate the optimum performance of
DPCM schemes operating upon first-order Gauss~Markov
and Laplace—Markov processes.

VI

In this section we present numerical results describing
the rate-distortion performance of optimum DPCM
schemes driven by first-order Gauss—Markov and
Laplace—Markov processes.

At the outset, note that in all these results the quantizer
is taken to be a uniform-threshold quantizer. A uniform
threshold quantizer is described by T,,, — T, = 8o, [ =
1,2,---, N — 2, where § is the step size normalized to the
standard deviation of the prediction error. The normalized
width of the outer intervals is  so that 8oz = [(Ty — T)
—2q0;]/(N — 2). For § =0, the quantizer becomes a
two-level symmetric quantizer, cf. [13]. This restriction is
imposed because of the complexity associated with the
algorithmic methods used for designing optimal entropy-
constrained quantizers driven by memoryless sources. These
algorithms must be used in step 3) of either Algorithm 1 or
Algorithm 2 of Section IV. While imposing uniformity on
the quantizer threshold levels results in a suboptimal sys-

NUMERICAL RESULTS

tem, it reduces the complexity of the quantizer design g, 3

procedure considerably [13].
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In all cases, the quantizer is chosen to be symmetric.
Since the input distributions under study are also symmet-
ric, for reasons described in [13], the number of quantiza-
tion levels is taken to be odd. In particular, this assumption
enables achievement of rates below 1 b/sample.

A. Rate-Distortion Performance Results

Algorithms 1 and 2, along with the polynomial expan-
sions of Section V, are used to obtain the optimal rate-dis-
tortion theoretic performance of DPCM employing uni-
form-threshold quantizers, operating on Gauss—Markov
and Laplace—Markov sources. In all cases (described be-
low) the two algorithms converged to the same quantizer
and hence yielded exactly the same result.

Performance curves for different values of the corre-
lation coefficient p (i.e., different amounts of memory in
the source) have been obtained. Results for p = 0.2, 0.5,
and —0.8 for N = 3, 5,9, and in some cases 17 and 33, are
illustrated in Figs. 3-5 and 6-8 for Gaussian and Laplac-
ian sources, respectively. In all cases we have normalized
the mean-square distortion D to the source variance ¢2. In
Figs. 3-5 we have included the rate-distortion function
R(D) of the corresponding Gauss-Markov source. For
Laplace—Markov sources, since effective means for com-
puting the rate-distortion function are not available, upper
and lower bounds (R (D), and R, (D), respectively) for
the rate-distortion function are developed and illustrated in
Figs. 6-8. Furthermore, asymptotic results for the rate-dis-
tortion performance of such schemes at high rates and for
a large number of quantization levels are included in all
performance curves. This asymptotic result is simply an
extension of the Gish-Pierce asymptote for zero-memory
quantization of memoryless sources [29]. These rate-distor-

Asymptotic Result
400 f N=17
AN
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2.00.

Entropy, bits/sample
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Performance of optimum DPCM coding scheme for first-order
Gauss~Markov source with p = 0.2
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Fig. 4. Performance of optimum DPCM coding scheme for first-order
Gauss—-Markov source with p = 0.5
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Fig. 5. Performance of optimum DPCM coding scheme for first-order

Gauss—Markov source with p = 0.8.

tion function bounds and asymptotic performance results
are discussed in the next section.

Let us note that for both Gauss-Markov and
Laplace-Markov sources, for rates in excess of 1 b/sam-
ple, we have obtained two quantizers satisfying the neces-
sary conditions. Clearly, for the same value of output
entropy, the optimum performance is obtained by the
quantizer yielding the smaller distortion. Thus, in Figs. 3-8
the optimum performance is determined by the lower
envelope of the performance curves corresponding to dif-
ferent number of quantization levels. Nevertheless, for
reasons that will become clear shortly, we have in most
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Fig. 7. Performance of optimum DPCM coding scheme for first-order

Laplace-Markov source with p = 0.5.

cases included the upper portion of the performance curves
as well.$

Several comments about the performance curves are in
order. In Figs. 3-5 (Gauss~Markov source), the asymptotic
results agrees favorably with our numerical result even at
relatively low rates. This agreement is more pronounced at
low correlation values. Moreover, similar to the memory-
less situation [29], there is only a 0.255 b/sample dif-

6The exception here is the case N = 17 where the upper portion of
these curves is not shown to simplify the figures.
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Entropy, bits/somple
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Fig. 8. Performance of optimum DPCM coding scheme for first-order
Laplace-Markov source with p = 0.8.

ference between the performance of the optimum DPCM
quantizer and the rate-distortion function at high rates. We
shall elaborate on this in the next section.

It can be seen from Figs. 3 and 4 that for low values of p
the difference between the performance of the DPCM
system and the rate-distortion function becomes smaller
for decreasing rates. For larger values of p, however, this
difference becomes larger at low rates. Specifically, the
maximum difference for p = 0.8 is observed to be about
0.55 b/sample. This implies that DPCM quantization
schemes are relatively less efficient at low rates when the
source is highly correlated.

For Laplace—-Markov sources our results demonstrate
similar behavior. Here, the difficulty is that the perfor-
mance curves (especially at high correlation values) ap-
proach the asymptotic result very slowly. For reasons to be
described, obtaining the rate-distortion performance of the
DPCM quantizer at high rates and large number of quanti-
zation levels becomes exceedingly difficult at high corre-
lation values. Therefore, for large p our performance curves,
in the Laplace—Markov case, do not demonstrate the valid-
ity of the asymptotic result. Nevertheless, results in Fig. 6
for p = 0.2 indicate slow convergence of the performance
curves to the asymptotic result with increasing N. For
p = 0, a more rapidly converging set of results is reported
in [12].

Finally, let us note that in the Laplacian case the dif-
ference between the rate-distortion function lower bound
and the asymptotic result for high rates is no longer equal
to 0.255 b/sample. The exact value of this difference is
calculated in the next section. At low rates, nevertheless,
the optimum performance curve is very close to the rate-
distortion function lower bound. However, the number of
quantization levels plays a more important role, in the

411

sense that a relatively larger number (compared to the
Gaussian case) of quantization levels is required to obtain
the optimum performance. For example, for the Laplace-

Markau catirca with 4 = N8 ot 1
IWVIALRUV SULUILLC willl -~ U.J alt 1

h /camnla an t:nnal

U/ DalllPlC all addluuual
1-dB in signal-to-noise ratio (S/N) can be gained by
increasing the number of levels from three to nine.

B. Comparison with Two-Level Schemes

Note that the limiting form of a three-level sythmetric
uniform-threshold quantizer as the step size § approaches
zero is a two-level (binary) symmetric quantizer. In all our
results, for three-level schemes at 1 b/sample we have
obtained two quantizers satisfying the necessary condi-
tions, one of which is the above binary quantizer. The
rate-distortion performance of the system with this binary
quantizer is determined by the endpoint of the three-level
performance curves at one b/sample.

Binary predictive quantization schemes (sometimes called
delta modulation) play an important role in data compres-
sion for their ease of implementation. Arnstein [5] has
studied the optimum performance of such systems for
Gaussian autoregressive inputs. The following discussion
provides further insight concerning the performance of
such systems and the potential advantages of a system with
additional quantization levels.

First, note that for Gauss—Markov sources no tangible
improvement at 1 b/sample is obtained by increasing the
number of levels from three to five or even nine. Therefore,
for Gaussian sources, the optimum performance at 1
b/sample can be achieved by at most three quantization
levels. For small correlation values (p = 0, and 8.2), the
three-level scheme offers a slight improvement over the
binary scheme. For higher correlation values (p = 0.5 and
0.8), interestingly, the opposite behavior is observed. That
is, the optimum two-level scheme outperforms the three-
level one. It must be kept in mind, however, that we have
confined attention to symmetric uniform-threshold
schemes. When this restriction is removed, performance at
least as good as a two-level system can be obtained.
Finally, it should be mentioned that the nonconvex behav-
ior of the performance curve for p = 0.8 at low rates (Fig.
5) can be convexified by a time-sharing of appropriate
quantizers [30). The dotted line in Fig. 5 designates this
time-sharing result. In Table I we have summarized the
rate-distortion performance of the optimal two-level and

TABLE1
S / N oF OpriMuM DPCM CODING SCHEMES AND
COMPARISON WITH RATE-DISTORTION FUNCTION
AT 1 B / SAMPLE FOR STATIONARY
GAUSS—~MARKOV SOURCES

o 2-level 3-level R(D)
0.0 439dB 4.59 dB 6.02 dB
0.2 451 4.65 6.20
0.5 522 5.09 7.27
0.8 7.56 6.85 10.46
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TABLE II
S / N or OpTiMuM DPCM CODING SCHEMES AND
COMPARISON WITH RATE-DISTORTION FUNCTION
BouUNDS AT 1 B / SAMPLE FOR STATIONARY
LAPLACE-MARKOV SOURCES
p 2-level 3-level 5-level 9-level R, (D) Ry(D)
0.0 301dB 523dB 575dB 576dB 6.62dB 6.02dB
0.2 3.03 5.40 5.98 6.00 6.97 6.20
0.5 3.36 6.44 7.42 7.50 9.81 7.27
0.8 4.65 8.00 11.14 11.80 21.69 10.46

three-level symmetric systems, as well as the corresponding
values of the rate-distortion function at 1 b/sample (in-
cluding the p = 0 case).

For Laplace—Markov sources the results are quite differ-
ent. In all cases, the optimum three-level scheme outper-
forms the binary scheme at 1 b/sample. The rationale for
such behavior is easily explained. Due to the impulse
component in the pdf of {W,} (cf. (41b)), the prediction
error assumes values close to zero with very high probabil-
ity, and hence any symmetric binary scheme fails to be
efficient since it does not include a representative zero
level. (Specific examples of symmetric sources with high
probabilities about the origin are given in [37]. It is shown
that symmetric two-level quantizers are not optimal for
these sources.) Moreover, as one can see from the perfor-
mance curves in Figs. 68, further improvement can be
obtained by increasing the number of quantization levels.
Again, a summary of results (including the p = 0 case) for
different number of quantization levels and the corre-
sponding rate-distortion function bounds for the
Laplace-Markov source are presented in Table II. For
example, at p = 0.8 an improvement in excess of 7 dB in
S/N can be achieved by going from a two-level to a
nine-level quantizer.

C. Convergence and Uniqueness

It can be observed from Figs. 3-8 that the solution to
the necessary conditions for optimality is nonunique for
output entropies in excess of 1 b/sample. Specifically, for
1 < H, < log ,N there exist two couples (gy, py) satisfy-
ing Conditions 1 and 2 of Section IIl. From a rate-distor-
tion standpoint, only that solution yielding the smaller
distortion (lower portion of the performance curve) is
useful. However, to demonstrate the nonunique nature of
the solution and, more importantly, to study the behavior
of the binary quantizer situation, we have in most cases
included all these results, including nonoptimum ones, in
our performance curves.

As mentioned earlier, in all cases the two algorithms
described in Section IV converged to the same optimum
quantizer. The major difficulty in implementing these al-
gorithms is computing the coefficients of the series expan-
sion for the prediction error pdf. Recall that, in theory, an
infinite matrix multiplication operation described by (38a)
and (46a) is necessary to compute the steady-state expan-
sion coefficients. In a practical situation, however, we are
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forced to use a truncated version of (38a) or (46a). This
raises the question of whether the truncated version in-
cludes enough terms for an accurate computation of the
coefficients. In what follows we shall elaborate on this.
First, note that a standard (i.e., zero-mean, unit-vari-
ance) normal density can be described by the Gram-
Charlier expansion with e, =1, and a, =0, £ > 1. We
say then that the series expansion of (35a) is “matched” to
a standard normal density. Thus, it is possible to express a
pdf close to standard normal by means of the
Gram—Charlier expansion with a small number of coeffi-
cients. Indeed, this has been the case for the pdf of the
prediction error at high rates. (At high rates, where the
quantization error is small, we have E, =~ W,, and hence
E, has a density close to the standard normal.) In fact, for
the Gauss—Markov source with p = 0.8, as Arnstein [5]
correctly points out, even at rates as low as 1 b/sample a
small number of coefficients provide sufficient accuracy. In
Tables 111 and 1V, for H, = 1 b/sample we have presented
the steady-state expansion coefficients describing the pdf

TABLE III
STEADY-STATE HERMITE POLYNOMIAL EXPANSION
COEFFICIENTS FOR A TwO-LEVEL OPTIMAL
SYSTEM DRIVEN BY A STATIONARY
GAUSS—-MARKOV SOURCE WITH

o =028
ag = 1.000000
a, = 0.155708
a, = 0.226487 E-01
ag = 0.253093 E-02
ag = 0231255 E-03
ao = 0180370 E-04
a, = 0123977 E-05
a, = 0767338 E-07
g = 0433662 E-08
g = 0225994  E-09
ay = 0109315 E-10
My =0, KO,

AN =2, T, =0, 0, = —Q, = 0.9081. Normalized
Distortion = 0.17508; output entropy = 1.00.

TABLE IV
STEADY-STATE HERMITE POLYNOMIAL EXPANSION
COEFFICIENTS FOR A THREE-LEVEL UNIFORM
THRESHOLD OPTIMAL SYSTEM DRIVEN BY A
STATIONARY GAUSS—MARKOV SOURCE
WITH p = 0.8°

g = 1.000000
a, = 0180650
ay = 0277711 E-01
ag = 0.294607 E-02
ag = 0234260 E-03
ao = 0144731  E-04
ay, = 0.714309  E-06
a, = 0.288450 E-07
e = 0.973740 E-09
g = 0.280507 E-10
ayy = 0704617 E-12
e 1=0, k=01,

AN=3, T, = —T, = 13850, Q3= —@Q; =1.9736,
Q, = 0. Normalized Distortion = 0.20323; output en-
tropy = 1.0096.
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of the prediction error when the source is Gauss-Markov
with p = 0.8 and the quantizers are the optimum two and
three-level quantizer, respectively. Note that our results for
the binary quantizer agree with Arnstein’s [5]. In all cases,
we have taken the number of coefficients large enough so
that no discernable change in the results can be achieved
by any further increase.

At low rates, the variance of the prediction error in-
creases. In fact, in the extreme case of Hy, =0, o2 = 1/(1
— p?). (This occurs when the middle quantization interval
occupies the entire support of the prediction error pdf. In
this case Y, = 0 and hence E, = X,.) Therefore, for |p|
close to one, a2 becomes very large and hence the predic-
tion error pdf deviates considerably from the standard
normal density. Therefore, in the low-rate regime, a larger
number of coefficients is required. Indeed, for p = 0.8 we
had to use 56 coefficients in the expansion of the predict-
ion error pdf for H, = 0.53 b/sample. This has been the
lowest rate for which we were able to obtain the optimum
performance for p = 0.8.

For Laplace-Markov sources the situation is slightly
different. The series expansion based on Laguerre poly-
nomials given in (42a) is matched to a Laplacian density
described by (40a). Therefore, a pdf close to Laplacian can
be expressed by (42a) with a small number of coefficients.
This is the case for the pdf of the prediction error when the
output entropy is small. More specifically, £, = X, so that
pE(-) is close to that given by (40a). At higher rates, where
the pdf of the prediction error deviates from a Laplacian
density, a larger number of coefficients is required. This
has been the major difficulty in obtaining the rate-distor-
tion performance of the DPCM quantization scheme driven
by Laplace~Markov sources at high rates.

VIL

Let us assume that an optimal DPCM coding scheme
with entropy constraint H, is designed, and let p%(-)
denote the steady-state marginal pdf of the prediction error
sequence. If the prediction error exhibits a certain degree
of smoothness, the asymptotic result developed by Gish
and Pierce [29] determines the rate-distortion performance
of the optimum quantizer at high rates. Specifically, if the
number of quantization levels N is large and if the output
entropy H, is also large (low distortion), then the average
quantization error D is given by

ASYMPTOTIC RESULTS AND BOUNDS

4D=_£wa~mg

B (47)

where h} is the differential entropy of a memoryless source
with pdf p%(-).

It is the intent of this section to develop similar asymp-
totic formulas for the performance of DPCM encoding
schemes at high rates and make appropriate comparisons
with the rate-distortion function lower bound for both
Gauss—Markov and Laplace—-Markov sources. The follow-
ing theorem proves useful in the development.
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Theorem 3: Let R (D) and R (D) be the rate-distor-
tion functions (subject to a squared-error distortion mea-
sure) of the input process { X, } and the prediction error
process { E,}, respectively. Then there is a critical distor-
tion DX > 0 such that

Ry(D) = Rg(D),

Proof: For convenience we assumed M = 1. Then
(11a) and (11b) yield

n—1

D (0, Dy].

X,=v,+ Y oY,_, n=1,2,---, (48)
i=1
and hence
n—1
X,=E,+ Y. oqn(E,_,), n=1,2---. (49)

i=1
Now if we define XV and E” as in Theorem 2, we can
write

XN=FN(EN), (50)

where Fy, is a nonlinear operator. Letting J define the
Jacobian of this transformation, we have

2
JFN = det (9—Ej .

It is easily shown that the Jacobian matrix is a lower
triangular matrix with diagonal entries equal to one. Thus

Jp = 1. (52)

N

(51)

Conversely, we can write
EN = FyH(XxV), (53)

where Fy! is the inverse of Fy. Here, again we can show
that the Jacobian of Fy! is unity, i.e.,
Jrt=1.

(54)

Now we resort to a Theorem by Hopkins [31, Theorem
2.2] in which it is established that '

Rx(D) 2 Ry(D) = Thim 5 [ pii(e) log1Jy,|de.
N~

(55)

for D € (0, D}), where D} > 0 and pj(-) is the N-fold
pdf of the prediction error sequence. Using (52) we can
write the last inequality as

Ry(D) = Rg(D), (56)

Interchanging the roles of X and E and using (54), we will
have

D (0, D]

Ry(D)=Ry(D), De(0,Dy], (57)

where D > 0. Now comparing (56) and (57) yields
D (0, D¥],

Ry(D) = Ry(D), (58)

where D* = min { D¥, D*} > 0, which was to be proved.
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This theorem, in effect, substantiates the fact that at high

tha digtartion f -
rates the rate-distortion function of the source and pfedlC

tion error coincide. This is not surprising, however, since at
high rates the prediction error is véry close to the innova-

tion sequence {W} generating the input autoregressive
nrocess and it is established hv Grav 1321 for Gaussian

process and established Gray [32] for Gaussiar
autoregresswe processes, and by Hopkms [31] for a generic
autoregresswe process, that there is a critical distortion D,
below which the rate-distortion functions of the source
{X,} and the innovation sequence { W, } coincide.

In general, we conjecture that the rate—dlstortlon func-
tion of the prediction error is upper bounded by the source
rate-distortion function and lower bounded by the innova-
tion sequence rate-distortion function. This is based on the
argument that when the quantizer is very fine so that
gy(x) = x, E, equals-W, and hence R ;(D) = R,(D). On
the other hand, when the quantizer is very coarse so that
gn(x) =0, Vx, E,= X, and thus R;(D)= Ry(D). In
intermediate cases, we suspect R, (D) < Rg(D) <
R, (D). This conjecture remains to be proved. At high

rates (i.e., D < min { D*, D,}), however, we do have
RW(D)=RE(D)=RX(D)' (59)

A. Asymptotic Results

For the Gauss—Markov case, at high rates the prediction
error possesses a normal density for which the Gish—Pierce
asymptote is valid, as given by (47), with

h% = % log ,27eo 2. (60)

But from (28), we have
o2 =02+ p°D. (61)
Thus, (47) can be written as
(me/6)e2,272Ho
T 1—(me/6)p27 2"

which determines the asymptotic behavior of the system at
high rates. Notice that for H, sufficiently large we have

b(H,),

(62)

D(H,) = (me/6)a},272", (63a)
or, correspondingly,
H, = -;—logz(vre/6) + % log,(e2/D). (63b)

This asserts that at high rates there is a (1,/2)log ,(m7e/6)
=~ 0.255 b/sample difference between R, (D)= R (D)
and the asymptotic result. This, of course, conforms with
the previously reported results in [9] and [33].

For the Laplace—Markov source this situation is totally
different. This is mainly due to the fact that the Gish-Pierce
result [29] requires a certain degree of smoothness in the
source density. This, unfortunately, is not the case here due
to the impulse component in (41b). In the following we
provide some discussion of this subtle issue.

Let us consider a memoryless source whose pdf is de-
scribed by (41b). We want to obtain asymptotic results for
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the quantizer performance in this case. We assume that the

noint x = 0 is not the houndarv of any two guantization
pomnt x ary quantizatio

intervals. This is because the point x = 0 occurs with a
highly probability and, hence, assigning an appropriate
representative level will help reduce the average distortion.
We, moreover, assume that the point x = 0 belongs to the

*th quantization interval and Q. = 0. Then the prob-
ability of the ith quantization level is given by

_[a-)F,
T\ +(1 - p?) P,
where P/ is the corresponding probability of the ith quan-
tization level when p = 0 in (41b).
The quantizer output entropy is then given by
Hy = —[0* +(1 — p?) Pi]log,[p* +(1 — p?) P4]
= L (1-0")P/log,[(1 - 0*)#/],

iEi*

i#i*

I ;
I3 . .
i=1i*,

(65)

which can be simplified to
H,= (1 — p?)H{ — p*log [0 +(1 — p?) P4]
—(1 = p*)log,(1 — 0*) +(1 ~ ) P4
(1-e)P:
-1 R S N A Ai—
®2 (1 - )P

where H{ is the quantizer output entropy when p = 0.
Furthermore, the average distortion can easily be shown to
be

; (66)

D=(1-p*)D’,

with D’ denoting the average distortion when p = 0.
In the limiting case of fine quantization (where the
Gish—Pierce result holds) we have P, = 0, and therefore,

= (1= p*)Hg + (%), (68)

where S#(-) is the binary entropy function given by

(67)

H(a)= —alog,a—(1—-a)log,(1—a), O<a<x<l.
(69)
When p = 0 the Gish-Pierce result holds and we have
= L oan—my
D= 122 , (70)

in which A, is the differential entropy of the memoryless
Laplacian source in (40a). Combining (67), (68), and (70)
yields
l:_PLZ22(hL—<Ho—f(p2»/<1—p2» (71)

12 ’
which is the desired result. Note that a similar result holds
for the general case in which the source density is a mixture
of any smooth density and an impulse; provided that 4, in
(71) is replaced by the differential entropy of the smooth
component,

Carter and Neuhoff [34] have developed bounding tech-
niques for the rate-distortion function of regenerative com-
posite sources similar to that in (41b). Specifically, if the

D=
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source density p(-) is described by

p(x) =0pi(x) +(1 ~ p?) py(x), (72)
then the rate-distortion function is lower-bounded accord-
ing to

R(D) = infeg{szl(Dl) +(1 - p*)R,(D,)},
1> &2
(73a)

where R;(-) and R,(-) are the rate-distortion functions of
p.(+) and p,(-), respectively, and

2= {(Dy,D,): °Dy +(1 - p?)D, < D}. (73b)

When p,(x) = 8(x), which is the case in (41b), we have
R,(D;) =0, and hence the infimum in (73a) occurs at
D, = D/(1 — p?). Thus

R(D)=(1- pz)Rz( - i)pz) 2 R(D). (74)

Using the Shannon lower bound (28], which is tight at
high rates, for R,(+) in (74) we can write

R(D)=(1- pZ)[hL - %mng”"fz}. (75)

From (71) we have

1 12D
o= 20(5) +(1 = ) = S g 22 19

which enables us to determine the difference between the
rate-distortion function lower bound R(D) and the
asymptotic performance expressed by (76). Unlike the
Gish—Pierce result we get’

A 2 1-p?
ARZ Hy— R(D)=#(p") + 5

=#(p*) +(1 — p*)0.255, b/sample. (77)

Envision the memoryless source of (41b) as the output of
a switch that randomly and independently moves between
two positions: up and down. The switch is up with prob-
* ability p?> and down with probability (1 — p?). When the
switch is up its output is zero with probability one. When
the switch is down its output is a real-valued variable
distributed according to (40a). With this in mind an inter-
esting interpretation for (77) can be provided. The quanti-
zation performance penalty is a factor (1 — p?) of the
ordinary penalty 0.255 b/sample plus an additional term
equal to the uncertainty in the switch position.

Note that, as one would expect, for p = 0, #(0) = 0,
and AR = 0.255 b/sample. On the other hand, for p = 1,
AR = 0. This makes sense, for at p = 1 the source output
is zero with probability one and there is no uncertainty in
the switch position. Straightforward differentiation implies
that AR is maximized at

e
log 2_6’"

p =—-1—~—z 0.675

V1 + me/6

and that AR . = log,(1 + y/me/6) = 1.133 b/sample.

(78)

7We conjecture that R(D) in (74) is tight. If this conjecture is true, the
quantity AR is truly representative of the penalty due to zero-memory
quantization of the source given by (72). ‘
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Now we are in a position to determine the asymptotic
performance of the DPCM coding scheme driven by
Laplace—Markov sources. We assume that at high rates the
pdf of the error sequence is close to that of the innovation
sequence. Thus using (71), we can write

— A2
D= _1_12L22(hi—(Ho—x’<pz»/(1—pz)),

(79)

where h¥ is the differential entropy of the smooth compo-
nent in the pdf of the prediction error. This quantity can
easily be shown to be

=1+ logz‘—;g£ b,/sample. (80)
w

Again, using (61), we can write the asymptotic perfor-
mance as

((1 = p?)e2/3)2~AHo=#()/A=p)
1 —((1 = p?)e%?/302, )2~ Xtha=H W' )/A~0")
2 D(H,). (81)
For sufficiently large H,,, (81) can be approximated by
D(H,) = ((1 — p*)e?/3)2~ AHo=# (/0= (82)

or, equivalently,

D=

1-p?

_ 2} .2
3 10g2(1 p)e.

3D (83)

Comparing (83) to R(D) in (75), which is also a tight
lower bound to R 5 (D) at high rates, results in a difference
equal to that given in (77), as one would expect.

Asymptotic results illustrated in Figs. 3—5 and 6-8 are
obtained by means of (62) and (81), respectively.

H,=#(p%) +

B. Rate-Distortion Function Bounds

For the Gaussian case the rate-distortion function can be
calculated exactly [28], [32]. For the Laplacian case, for
which the rate-distortion function is not known exactly, we
have used upper and lower bounds. The upper bound is the
well-known Gaussian upper bound [28] and the lower
bound is the autoregressive lower bound [32]. This lower
bound is determined in terms of the rate-distortion func-
tion of the innovation sequence described by (41b). This
rate-distortion function, in turn, has been lower bounded
by the Carter—Neuhoff composite lower bound described
in (74). (In Figs 3-8 the Gaussian upper bound and the
combined autoregressive composite lower bound are desig-
nated by R, (D) and R, (D), respectively.) We have used
the Blahut algorithm [35] for computing R,(-) in (74).

VIII. SuMMARY AND CONCLUSIONS

We have studied the structural properties of optimum
DPCM schemes for Mth-order autoregressive inputs. Nec-
essary conditions for optimality of the quantizer in these
schemes are developed and algorithmic approaches for
designing such quantizers are proposed. Also, difficulties
inherent in computing the distribution of the prediction
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error are examined carefully. To overcome these problems,
we have developed series expansion methods matched to
the source distribution. Our algorithmic procedures for
optimum quantizer design are used in conjunction with the
series expansion techniques to design optimum uniform-
threshold entropy-constrained DPCM encoding schemes
for first-order Gaussian and Laplacian autoregressive
sources. It is shown that for Gaussian sources there could
be a wide gap between the optimum performance and the
rate distortion function at low rates, when the source is
highly correlated.

Asymptotic results, similar to those developed by Gish
and Pierce [29] in the memoryless case, are developed in
some detail. These results, which agree favorably with our
numerical results in the Gaussian case, imply that at high
rates there is only a 0.255-b/sample performance penalty.
Corresponding asymptotic results for Laplacian sources
demonstrate a wider gap between the optimum quantizer
performance and the rate-distortion function lower bound.
Unfortunately, at high correlation values our numerical
results in the Laplacian case are not sufficient to demon-
strate the validity of the predicted asymptotic performance.
Because of the complexity of the quantizer design proce-
dure at high rates when the number of levels is large, we
were not able to provide performance results beyond N =
17.

In all our numerical results we have restricted attention
to uniform-threshold quantizers. Obviously, removal of this
constraint can only improve the performance. We have
decided to forego studying this issue, however, because of
the complexity of more general optimum entropy-con-
strained quantizer design procedures.

A logical extension of this research is to consider the
case p = 1. Indeed, (1) with M =1, p = 1 and Gaussian
innovations represents the discrete-time version of the
well-known Wiener process [6]. In this case the prediction-
error density can be calculated explicitly, and hence there
is no need for the series expansions. Another issue that
remains to be thoroughly studied is a proof for the conver-
gence of the algorithm as well as sufficient conditions for
the quantizer optimality.

Finally, we should note that we have considered only the
first-order entropy of the quantizer output. At low rates,
the prediction error is highly correlated and hence the
entropy rate at the quantizer output might be noticeably
lower than the first-order entropy. Computing or bounding
this entropy rate is another issue that deserves study.
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APPENDIX A
RECURSIVE EQUATION FOR UPDATING THE HERMITE
ExPANSION COEFFICIENTS

In this appendix we present a simplified version of (38b) in the
text. Also, formulas describing the quantizer output entropy and
average distortion in terms of the Hermite expansion coefficients
will be given.

Let us define

F(y)# f_waw[x = p(y — av (YD) H(x) dx,

1=0,1,---. (A1)

Then, replacing p, (x) by g(x) and using (35¢), it is easy to
show that v

E()=dly—av(Ml,  1=01,---. (A2
Thus (38b) of the text can be written as
/ o0
A= __EVED - e’ k=01,
(A3)

Again, using (35¢) and integrating by parts yields the following
result:

/ N
p T; -k
(1= k) T % dx, 1>k
(1 - k)' igl fT,-;l(x Ql) g(x) X >
N-1
A= o1~ Z (Qii1— 9)&(T) |, I=k>1
i=1
N-1
0 Z (Qi1— Q) He_(T)g(T), 1<i<k,
i=1
(A.4a)
with
Ao =1 (A.4b)
Ao =0, k=1 (A4c)

Here, as in [5], we have assumed that ¢}, (x) is zero everywhere
except where x — gy(x) is zero, in which case ¢4 (x) is an
impulse whose weight is equal to the quantizer jump at that
point.

Using (61) and the facts that 63, =1 and o2 = 2a, + 1 (cf.
[5]), implies

D=22.
P

(A5)

The quantizer output entropy H is given by (25), where P, can
be expressed as

P~ [T Py(x) dx
Ty

kgoak fT ilg(x)Hk(x) dx. (A6)

But

[ 8Ce) B () e = 8T Byo(Ty0) = (7)) By o(T),

i

k>=1. (A7)



FARVARDIN AND MODESTINO: DPCM FOR AUTOREGRESSIVE SOURCES

Thus,
P/=°‘ofTi g(x) dx
+ i a [ g(T,_ ) Hy 1 (Tioy) — g(T) Hy_1(T1)),

[=1,2,---, (AS8)

which, together with (25), leads to a formula for H,, in terms of
the expansion coefficients.

APPENDIX B
RECURSIVE EQUATION FOR UPDATING THE LAGUERRE
ExPANSION COEFFICIENTS

In this appendix we present a simplification of (46b). Corre-
sponding formulas for the output entropy and average distortion
are also derived in terms of the Laguerre expansion coefficients.

Upon defining

G(y)* fow{ pwlx—o(y~an(»)]

+pylx+p(y — an ()]} L(x) dx,
y>0, [0, (B.l)

we can write (46b) as

Lk=0,1,---. (B2)

o0
B~ [ G L) &,
Noting that p, () in (B.1) is given by (41b) and using (42c), the
following simplified version of (B.1) can be obtained.

G(y)=p+(1—6)2 1~ exp{~ply — av(N)}]
/

+ Z Ci,1|Pli|)’ - ‘IN(.V)V’
i=1

[>21, y=>0, (B3a)

where

Also

Go(y) =1 (B.4)
Equations (B.3) and (B.4) are used to facilitate the computation
of B, , expressed by the double integration in (46b).

Note that

Ly(x) =1, (B.5a)
Li(x)=1-x, (B.5b)
and
Ly(x)=1-2x+ %xz‘ (B.5¢)
Therefore
F=4(B— 2B +1). (B.6)
On the other hand,
ol =2(1 - p?), (B.7)
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and thus using (A.5) implies

4B, — 2B, +1) - 2(1 - Pz)
0 '

Similar to (A.6), we can express P, in terms of the Laguerre
expansion coefficients by

fT' Py(x)dx

-1

Z ka l(x)Lk(X)dx, >

D=

(B.8)

P,

N~+1

+1,

(B.9a)
while for [ =

o0

Tone

P(N+l)/2 =2 E Bkj(; « Dﬂl(x)Lk(x) dx.
k=0

(N +1)/2
(B.9b)

But,
T,

fTT’ I(x) L(x) dx = ~kl-[ kkl(xkl(x))] . (B.10a)

-1

Ivl
1)k I~ Ti

(k=i

-y

J=0

STl E

Ti-1
(B.10b)

Equation (B.10b), together with (B.9) and (25), describes the
quantizer output entropy in terms of the expansion coefficients.
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