
EE398 FINAL PROJECT REPORT, WINTER 2012 1

EE398A: Group 2 Project Report
Christopher Li, Idoia Ochoa and Nima Soltani
{chriswli, iochoa, nsoltani}@stanford.edu

Abstract—We present an approach to compress a stereo image,
which comprises a left and a right image, both of which are
typically correlated with each other. To minimize the rate, in
bits per pixel, of the compressed image, we incorporate several
common encoding techniques found in JPEG-2000 with residual
image coding and quantization step search. Results show that
our scheme is able to compress the image pair while achieving
a specified target PSNR at the reconstructed image.

I. I NTRODUCTION

While JPEG-2000 is the leading standard for image com-
pression, it does not exploit similarities between the two
images in a stereo image pair to achieve a further reduction
in the amount of bits needed. In this project, we adapt various
features of JPEG-2000, such as block coding and zig-zag
scanning [1] to develop a compression scheme for stereo
images, which are of interest because they can provide a 3-D
representation of a scene [2]. Fig. 1 is an example of a stereo
image pair.

If we can exploit similarities between the two images,
we can reduce the amount of information that is needed to
encode the two images. While both images in the stereo pair
have similar visual properties, there are inherent differences
between the two images. In particular, there may be a spatial
offset between a feature in the left image and the same feature
in the right image, such that the right image can be considered
a translated copy of the left image. However, the relationship
between the two images may be more complicated than that
of a one-dimensional translation between the two images. The
challenge is to identify and exploit similarities of the image
while meeting a minimum requirement on the quality of the
reconstructed image following decompression.

Fig. 1: Example of stereo image

II. PROBLEM DESCRIPTION

The aim of this project is to construct an encoding-decoding
pair for stereo images (see Fig. 1) while satisfying a PSNR
requirement of 37 dB and an average encoding-decoding time
of two minutes. The images are composed of a left and a right
image that are highly correlated. Each image is540 × 960
pixels in size, and is decomposed into its luminance (Y ) and

chrominance components (Cb andCr), which are then encoded
separately. The remaining components are then down sampled
by 2, leading to an image of dimension270 × 480 pixels.
MATLAB is the main programming language used for this
project. Hereafter, the subscriptsLY , RY , LCb

, RCr
, LCr

and
RCr

denote theY,Cb andCr components for the left and right
images, respectively.

The performance of the encoder is measured by the com-
pression rate, as measured in bits per pixel.

III. SYSTEM OVERVIEW

The encoder scheme is illustrated in Fig. 2. The left image
is encoded separately by using a discrete wavelet transform
followed by a uniform quantizer, which is optimized to find the
biggest step size while meeting a require MSE, as explained
in the next section. The resulting quantized version is then
encoded by an arithmetic coder. For the right image, we decide
between encoding it separately, intra mode, or with the helpof
the left image as side-information, inter mode. The decision is
based on the MSE incurred byLY after the quantization. If it
is bigger than a specific parameter, we choose the intra mode,
and the inter mode otherwise. WhenR is encoded separately,
the same steps as for the left image are performed. For the
differential encoding, we calculate the motion vectors andthe
residuals, and then encode them using Huffman and arithmetic
coding, respectively. Once the decision on whether or not to
code the right image individually is made, all of the blocks
in the right image follow the same coding scheme. The main
reason why we do not consider a block decision scheme is
that in stereo images, as opposed to video, we know both left
and right images are typically highly correlated.

Fig. 2: System Overview



EE398 FINAL PROJECT REPORT, WINTER 2012 2

IV. QUANTIZATION LEVEL SEARCH

We want to ensure a minimum PSNR between the original
image and its lossy version, where the PSNR is given by

PSNR = 10 log
2552

MSE
[dB] (1)

Throughout the paper,k ∈ {Y,Cb, Cr} denotes the image
component. We denote byLk andRk the original left and right
components, respectively, and byL̂k andR̂k the reconstructed
versions.wk andhk stand for the width and height of thek
component, respectively. For ease of notation, we define

MSEL =
∑

k

MSELk
=

∑

k

hk∑

i=1

wk∑

j=1

(Lk − L̂k)
2

i,j

MSER =
∑

k

MSERk
=

∑

k

hk∑

i=1

wk∑

j=1

(Rk − R̂k)
2

i,j

The MSE is computed as

MSE =
MSEL +MSER

2 · 1.5 · wY · hY
(2)

Combining the above equations (1) and (2), we have that
to meet the given PSNR requirement we must satisfy

MSEL +MSER ≤
2 · 1.5 · wY · hY · 2552

10PSNR/10
(3)

We force the encoder to allocate the same MSE for the
left and the right image, i.e.MSEL = MSER. Any other
combination would work, but we want both of them to have
the same MSE, so that the distortion induced in the decoded
image is the same for both left and right parts.

Denote the right part of equation (3) asMSE∗. Then, we
find the biggest the step size∆k such thatMSEk = ak

MSE∗

2
,

where theak’s are chosen to satisfyaCb
+aCr

+aY = 1. This
method ensures the final PSNR to be as close to the target
PSNR of 37 dB.

We allocate 8 bits for each∆k, which means that our
quantizer looks for the maximum∆k ∈ 1, . . . , 255. To speed
up the computation, we divide the range in half, and start
with the middle value. If we meet the MSE allocated for that
specific component, we take the upper part, and otherwise the
lower part. In any case, we proceed in the same way until the
range is lower down to one single value.

This method also allows to optimize each component sep-
arately, while ensuring the requirement of 37 dB is met.

V. ENCODING THE LEFT IMAGE

Throughout the following discussion, we will assume that
the left image is the reference image and that the right image
is the target image. The following illustrates the encoding
process for each of the components of the left image.

1) Preprocess the image by subtracting the value 127 to each
of the pixels. This makes all the values to be centered
around 0.

2) Pad the image with zeros to make the size of the image
appropriate to perform a cascaded wavelet transform of
5 levels for componentY and 4 levels to componentsCb

andCr.

3) Apply a 5-stageD4 wavelet transform to componentY
and 4-stages to componentsCb andCr.

4) Quantize the image as described in Section IV. The result
of this operation is denoted asLQk

.
5) EncodeLQk

via arithmetic coding.

The padding is done by adding four rows to theY compo-
nent and two to the other ones. We choose theD4 wavelet
transform after finding that it resulted in a lower entropy
representation than with theHaar wavelet. Due to the fact
that theY component is four times bigger in size than the
Cb and Cr components and after some simulations, we set
aY = 10/12 andaCb

= aCr
= 1/12 for the quantizer.

VI. ENCODING THE RIGHT IMAGE

We have two modes to encode the right image. One of
them encodes the right image independently of the left image,
namely intra mode, and the other one makes use of the correla-
tion between the two of them to improve the compression rate,
denoted by intra mode. Choosing between the two methods is
done after encoding the left image. Specifically, we compute
the reconstructed version ofLY , denoted byL̂Y , when the
quantizer step∆Y is set to twenty. If the incurred MSE is
bigger than10

12

MSE∗

2
we choose the intra mode, and otherwise

we use the inter mode.

A. Intra mode

In this case, the right image is encoded independently of
the left image. We perform the same steps as for the left
image, i.e., subtract the value 127 to center the values around
zero, pad the image, apply a D4 wavelet transform of 5 and
4 stages for the luminance and chrominance components,
respectively, apply a uniform quantizer with variable step,
where aY , aCb

and Cr take the same values as before, and
finally encode with an arithmetic encoder.

B. Inter mode

In this case, we encodeRk using L̂k as side-information,
which is available at both the encoder and the decoder. The
idea is to reduce the number of bits needed to expressR by
exploiting the similarity betweenRk and L̂k.

For each of the right componentsY , Cb andCr, we do the
following.

1) Partition each image into30× 30 blocks.
2) For each block, find the corresponding30× 30 block in

the same component of̂L that minimizes the MSE, and
store the corresponding shift vectorV = (dx, dy).

3) Compute the residual image, denoted byRRESk
.

The reason reason we use a block size of30 × 30 is the
dimensions of the image are both integer multiples of 30,
such that we do not need to pad the image with zeros. Also,
based on the results shown in Fig. 3, we find that we do not
incur much loss in the number of bits we need to encode.
Ideally, for the motion compensation, we would like to allow
the encoder to look in the entire imageL̂k in order to find the
best match. However, this drastically increases the complexity



EE398 FINAL PROJECT REPORT, WINTER 2012 3

of the encoder, the running time and the alphabet of the vectors
we then need to encode. We notice that the displacement is
mostly in thex component rather than in they component.
Therefore, as a trade-off, we restrict the motion vectors tobe
in the rangedx ∈ {−64 : 2 : 64} anddy ∈ {−6 : 1 : 6}. The
residual images for each of the components are computed as

RRESk
= Rk − S(L̂k, {Vk}),

where{V } denotes the set of shift vectors andS(·, ·) sets each
block of the image to the one indicated by the shift vectors.

Notice that knowing the residual and the set of shift vectors
is sufficient to reconstruct the corresponding image. Next we
describe how we losslessly encode the shift vectors and the
residuals.

10 12 14 16 18 20 22 24 26 28 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

block size

bi
ts

/p
ix

el

Number of bits for encoding the residual as a function of block size

 

 

bits for residuals
bits for shift vectors
bits for shifts+residuals

Fig. 3: Total bits versus block size

1) Shift vectors coding:We losslessly encode the set of
shift vectors{V } = {(dx, dy)} using a Huffman encoder,
where each symbol is given by the pair(dx, dy). TABLE I
shows the entropy ofdx, dy and the joint(dx, dy) averaged
over the set of images in the training set. Evidently, jointly
encoding the shift vector components reduces the expected
bit rate. There is a clear trade off between constructing the
Huffman table based on the statistics of the set{V } that
we want to encode and constructing the table based on the
statistics of the training set. We choose the second option
due to time and complexity constraints, and to avoid the
overhead caused by sending the Huffman table. The resulting
distribution over the training set is shown in Figure 4.

E[H(dx)] E[H(dy)] E[H(dx, dy)]
5.7007 3.8163 4.3926

TABLE I: Expected entropy for the shift vectors.

2) Residual coding:We found that after the quantization
block with aY = 10/12 andaCb

= aCr
= 1/12, the residuals

of the chrominance components were close to be zero for most
of the images in the training set. Based on this fact, we impose
the residuals ofCb andCr to be zero, so that we do not need
to send any bit of information for them. We then compute the
MSE incurred by these two components as

MSEC =
∑

k∈{Cb,Cr}

hk∑

i=1

wk∑

j=1

(Rk − S(L̂k, {Vk}))
2

i,j

Fig. 4: Frequency of the shift vectors (dx, dy) for the training
set

We apply a30 × 30 DCTII to the residual of theY com-
ponent. We set the block size to30× 30 to be consistent with
the block size used to find the shift vectors. We choose DCT
over the discrete wavelet transform based on the approach in
[3], and because of the edges between adjacent blocks due to
the motion compensation.

After applying theDCTII transform, we quantizeRRESY

with the uniform quantizer, with the parameteraY set to

aY =
MSE∗ −MSEC

MSE∗
,

whereMSE∗ andMSEC are as defined above. By doing so,
we guarantee to meet the PSNR constraint.

After performing the quantizer step, we perform the follow-
ing steps

1) ZigZag scan each block.
2) Substitute the last run of zeros, if it exists, by a new

symbol.

In general the DC component tend to be high, and the AC
components of the high frequencies to be close to zero,
especially after quantization. By doing a ZigZag scan we
expect to have a long run of zeros at the end. We make
advantage of this by substituting this run by a new symbol
and decreasing the size of the block to be encoded. Finally,
we feed the resulting symbols to the arithmetic encoder. Notice
that in this case, because we decrease the size of each block,
the decoder also needs to know the length of the input to the
arithmetic encoder.

C. Writing to file

We write to a binary file all the information needed by the
decoder to reconstruct the compressed image. For each of the
left components we allocate 8 bits for∆, one bit for the sign of
the minimum value after the quantizer, 15 bits for the absolute
minimum value, 9 bits for the length of a binary sequence
that specifies which values are found in the sequence that is
fed to the quantizer, and the sequence itself. This information
suffices to reconstruct the different values that can be found



EE398 FINAL PROJECT REPORT, WINTER 2012 4

at the input of the arithmetic encoder. Notice that the use of
an uniform quantizer reduces overhead. We also need to store
the output of the arithmetic encoder and the frequencies of
each of the symbols. For the sequence, we allocate 21 bits to
specify the length of the sequence, and then write the sequence
itself. To store the frequencies, first we set the higher one to
zero, and then we specify the number of bits we are going to
use to describe each of the frequencies using 5 bits followed
by the frequencies. Since the decoder knows the length of the
input sequence to the arithmetic coder, it can reconstruct the
frequencies.

When the right image is encoded using the intra-mode,
we write to file exactly the same information as described
above. For the inter-mode, we store the shift vectors encoded
with the Huffman table. Since the Huffman table is stored in
memory, we do not need to send it. For the residuals, since
the chrominance components are set to zero, no information
is needed to be sent for them. For the luminance component
we send the same information as before regardless the output
of the arithmetic encoder. The only difference is that due to
the deletion of runs of zeros, the decoder no longer knows
the length of the input sequence to the arithmetic coder, and
therefore we need to allocate extra 19 bits to specify its length.

VII. D ECODER

The decoder extracts all the necessary information from
the binary file, and recovers the left and right images by
just performing the reverse operations. As discussed below,
a bottleneck in this step was the run time of the Huffman
decoder.

VIII. I MPROVING THE RUNNING TIME

We found that performing certain computationally exhaus-
tive tasks in C and C++ instead of MATLAB significantly
reduced the running time. For example, using C++ to perform
the block search reduced the running time of this operation
from 87 seconds to 49 seconds. Also, using C to perform
Huffman decoding on the Y component of the image reduced
the running time needed for decoding from 9 seconds to 0.03
seconds.

IX. SIMULATION RESULTS

TABLE II shows the performance of the proposed encoder
for the set of 14 images in the training set. The results are
shown in bits per pixel, computed as the size of the encoded
file in bits divided by the size of the image, i.e. divided by2×
960. The first column specifies the picture being compressed,
the second and third column show the bit rate achieved by
the encoder when the right image is encoded using the inter
mode or intra mode, respectively. The last column indicatesthe
mode chosen by the encoder to compress the right image. As
observed, the inter mode is not reducing the bit rate, contrary
to what one would expect.

It is evident from the simulation results in TABLE II and the
histogram shown in Fig. 4 that the choice of thedy is causing
our inter-frame coder to perform suboptimally. From the large
frequency ofdy values near -6 in the histogram, it is clear that

Inter mode Intra mode
Image Bit rate [bits/pixel] Bit rate [bits/pixel] Chosen mode

1 1.9236 1.7324 Intra
2 0.9556 0.7566 Inter
3 0.1807 0.1994 Inter
4 0.7164 0.6838 Inter
5 0.9304 0.8785 Inter
6 1.3679 1.239 Intra
7 1.9489 1.8104 Intra
8 1.8974 1.7188 Intra
9 0.6453 0.6391 Inter
10 1.998 1.7766 Intra
11 1.0631 0.9341 Intra
12 0.5879 0.5725 Inter
13 2.2172 2.1404 Intra
14 3.3196 2.3837 Intra

TABLE II: Compression results for the training set in bits/pixel
for the two modes, and the actual mode chosen by the encoder.

it is necessary to search through a greater range of vertical
displacements. As discussed previously, the entropy values in
TABLE I show that it makes the most sense to encode(dx, dy)
jointly because of the reduced entropy (in bits per shift).

X. CONCLUSIONS

We found that arithmetic coding outperforms Huffman
encoding for our approach, and that using the DCT to encode
the residual is advantageous over using wavelets because it
results in a lower-entropy representation of the image.

A key conclusion from our approach is that is important
to consider the trade-off between bits allocated to shift data
and residual data. Our approach was based on optimizing the
quantization step sizes for the reference and residual image.
However, this approach depends heavily on the performance
of the block search when computing the residual image. The
quantization method that we used did not lend itself well to
dynamic allocation of the blocks to neither inter nor intra
coding. One possible extension to our project is to explore
the concept of dynamically coding each block. A pitfall of
our approach is that the suboptimal performance of the block
search led us to encode the Cb and Cr components with zero
bits.

In this project, we allocate half of the MSE to the left image
and half to the right. This was motivated by our desire to
achieve a pleasant looking image by equally allocating MSE
to both images. We might have achieved a higher compression
ratio if we removed this restriction.

In the early stages of this project, we experimented with
the embedded zerotree wavelet (EZW) algorithm [4], which
can lead to more improvements in compression. However,
we found its implementation in Matlab to be far too long
in running time. Thus, another possible extension of our
project is to develop an efficient implementation of the EZW
algorithm. Similarly, we anticipate that we can achieve further
compression by combining bit planes with run length coding.

REFERENCES

[1] M. Marcellin, M. Gormish, A. Bilgin, and M. Boliek, “An overview of
jpeg-2000,”Image and Vision Computing, 2003.



EE398 FINAL PROJECT REPORT, WINTER 2012 5

[2] J. Ellinas and M. Sangriotis, “Stereo image compression using wavelet
coefficients morphology,”Image and Vision Computing, 2003.

[3] T. Frajka and K. Zeger, “Residual image coding for stereo image
compression,”IEEE Vehicular Technology Magazine, January 2003.

[4] J. Shapiro, “Embedded image coding using zerotrees of wavelet coeffi-
cients,”IEEE Transactions on Signal Processing, vol. 41, pp. 3445–3462,
December 1993.

APPENDIX

CONTRIBUTIONS
Christopher Li

• Implemented block search and encoding of residuals in
C++

• Zig-zag scanning code.
• Fast implementation of 2-d convolution via cconv in

Matlab for use in wavelet transform.
• Implemented Huffman decoder in C.
• Experimented with embedded zerotree wavelets.
• Determined statistics and entropy of residuals and shift

vectors.

Idoia Ochoa

• Wavelet transform and inverse wavelet transform.
• Optimization of the uniform quantizer.
• Comparison between the performance of the DCT and

Wavelet transform for the residuals.
• DCTII transform and inverse DCTII transform.
• Substitutions of last run of zeros by a new symbol.
• Writing and reading from file.
• Huffman and Arithmetic encoder.
• Lossless encoding a Huffman table to write into a binary

file.

Nima Soltani

• Implemented block search and encoding of residuals in
Matlab.

• Speed up the search of the delta step for the uniform
quantizer.

• Fast implementation of 2-d convolution via cconv in
Matlab.

• Writing and reading to file.
• Developed initial implementation of residual coding with

losslessly coded reference image.
• Explored performance under various block sizes.
• Code cleanup.


