Stereo Image Compression

Deepa P. Sundar, Debabrata Sengupta, Divya Elayakumar

{deepaps, dsgupta, divyae} @stanford.edu
Electrical Engineering, Stanford University, CA.

Abstract— In this report we describe in detail our algorithm for
stereo image compression. The reference image was coded using
a DCT, followed by entropy coding. The disparity and motion
vectors for the other image are computed after a block-matching
technique. Finally, the residual image is coded using a DCT,
followed by entropy coding.

Keywords- stereo image compression; block matching; DPCM

1. INTRODUCTION

With the increasing popularity of 3-D display of scenes
using popular approaches as stereo or multi-view images, the
need for stereo image compression has become more
pronounced. In this competitive course project, our goal was to
design and implement a stereo image coder and decoder which
achieved minimum bit rate while meeting the specifications
provided. The minimum allowed PSNR for any image was
37dB. There was also a time constraint of 2 minutes (on
average) imposed on the entire coding and decoding process.

While existing standards like JPEG and JPEG2000 achieve
significantly high compression ratios, there is still a lot of
desired features for stereo image compression. This is because
there is a great deal of redundancy between the left and the
right stereo images, which can potentially lead to even better
compression.

The rest of this report is structured as follows. In Part 11, we
discuss the process of encoding the reference image (left
image). Various design choices that we made have been
elaborated and justified. Part III discusses block-matching,
prediction of the right image and residual computation. The
decoder structures for both the left and right images is
explained in Part IV. The performance of our algorithm is
evaluated in Part V. Finally, Part VI summarizes our entire
project and enlists some possible extensions to our work.

II. ENCODING OF THE LEFT IMAGE

A. Block based DCT

The reference image (which was the left image for our case)
was encoded by using a DCT transform, followed by entropy
coding [1][3]. While taking a block DCT, important design
choices to be made were the block size to be used and the step
size for quantizing the DCT coefficients. Considering the large
size (540 x 960 pixels) of our training images, we felt that the
standard 8x8 block would be too small and would increase
both the bit rate and the computation time. As such, we
decided on a block size of 32x32 for the Y channel of our

images and a 16x16 block for the down-sampled Cb and Cr
channels (by a factor of 2).

B. Quantization of DCT coefficients

We used a uniform quantizer for quantizing the DCT
coefficients [2]. The step size of the quantizer determines both
the bit rate and the PSNR of the reconstructed image. Since
the problem statement required us to achieve a PSNR greater
than 37dB while achieving minimum bit rate, we decided to
independently optimize the PSNR of both the left and the right
image to lie between 37dB and 38dB, since this would give us
maximum compression. Starting with a step size of 20, we
kept iterating until the PSNR of the left image falls within this
range.

C. Differential encoding of DC coefficients

Since the magnitude of the quantized DC coefficients is
quite large, transmitting them as such would require a large
number of bits. Hence we decided to do a differential
encoding on the DC coefficients of all the blocks in the image.
The DC coefficient of the first block was transmitted as such,
but for the remaining blocks, only the difference of each DC
coefficient with the previous coefficient was transmitted.

D. Zig-Zag scan and Run Level encoding of AC coefficients

Following a DCT and quantization, a zig-zag scan was
done on the quantized ac coefficients. Next, run-level coding
was performed with the maximum length of run capped at 31.
The trailing long run of all 0’s was not transmitted. The 0-0
symbol (a 0 run of 0) was used as the EOB symbol.

E. Entropy Coding

Following a run-level coding of ac coefficients, we decided
to encode the runs and levels separately using a lossless
entropy coder.

Initially, we implemented Huffman coder for encoding the
runs and levels. Huffman tables were trained separately for
every coefficient in the block. Thus, each coefficient in a
block has a different Huffman table, while coefficient i in
every block shares the same Huffman table. We encoded the
DC and AC coefficients in every block using their respective
Huffman table. The Huffman tables were transmitted along
with the encoded bit stream to the decoder.

The main drawbacks with this earlier approach of ours
were two-fold. Firstly, we were incurring a huge overhead in
transmitting the Huffman tables. Secondly, even if the tables
were hard-coded into the encoder and the decoder, we would
not obtain a fractional bit rate (per pixel) since Huffman
coding always uses at least 1 bit per symbol. These factors

motivated us to implement arithmetic encoding for the
reference image.

For using an arithmetic coder, we assumed that the alphabet
for runs was {0,1,.., 31} while the alphabet for levels was {-
200, -199,..., 199, 200}. The arithmetic coder needs the
apriori probabilities of all the symbols in each alphabet in
order to encode a given sequence of runs or levels. These
probabilities were estimated by plotting appropriate
histograms, which are shown in Figures (2) and (3). Finally,
the runs and levels obtained from step D above were
separately fed into the trained arithmetic coder, which
generated binary bit streams which were then transmitted.

The entire process described in steps A4 through E is
summarized in a block diagram shown in Figure (1).

Run Level
Coding of ac
= = coefs,
Differential
. encoding of
Quantized DET coeffs Zig zay scanming DC coetts
Ditferentially encoded DC J
Runs,
Levels
Binary bit stream
[Arithmetic Coding [
Block
Trained probability

ables

Figure 1 : Block Diagram of Encoder for Left Image

Trained probability distribution for the Levels
025

=)
@

o

Probability of each level

o
=1
@

0 L
-200 =150 -100 -50 0 50 100 150 200
Levels

Figure 2 : Trained probability distribution for Levels

Trained probability distribution for the possible uns

Probability of Run

15 20 25 30
Run

Figure 3 : Trained probability distribution for Runs

F. Comparison with JPEG

We first evaluated the performance of our algorithm for
encoding the left image with standard JPEG compression as the
base line. For a PSNR of approximately 37 dB, our algorithm
out performs JPEG for a large number of test images. The
results have been illustrated in the following scatter plot
(Figure 4). From the plot, it can be observed that our
performance is significantly better for certain images, while for
other images, our performance is very close to that of JPEG
standards.

3

25
’T.g‘ 2
% 15 ; P . . B Qur compression
i m ¢ *] + Jpeg compression
2 1]]
E
= . i @ =

0.5] " u

||
0
o] 2 4 6 8 10 12 14 16

Training image

Figure 4 : Comparison of performance of our algorithm with JPEG
(for encoding the left image)

Reconstructed (Sarme motion vectors used
Left image for all channels)
(Y channel)
Block _| Estimation of
matching Motion Vectors
Right Image
(Y channel)
Predicted
Binary bit Right Image
stream
DCT and
e Residual Image
Actual
Right Image

Figure 5 : Block diagram for encoding the right image

III. BLOCK MATCHING AND ENCODING OF THE RIGHT IMAGE

In Stereo image compression, once the reference image is
encoded independently, we do not have to encode the other
image (in our case the right image) completely. We exploit the
redundancy between the two images thereby reducing the bit
rate. We essentially code the right image by computing a
disparity map and the corresponding residual image. The
residual image is then encoded in a similar manner like the
reference image.

The block diagram in Figure 5 shows the encoding process
of the right image. The RGB image is broken down into the Y,
Cb and Cr channels and fed to the encoder. Once the left image
is encoded completely, we use the optimized step size values
for it to form the reconstructed left image.
The reason for using the reconstructed left image is that, this is
the image we essentially have at the decoder. Using the
original left image to compute the motion vectors will not be
what we actual do at the decoder and so would affect out PSNR
optimization. Once the motion compensated right images are
obtained, we then subtract these from the original right images

to obtain the residual images. The residual images are encoded
such that the PSNR of the right image is optimized to lie
between 37 and 38dB.

A. Block Matching

Block matching is a technique in which for each block in
the right image we try to find the best match in the
reconstructed left image [4][7]. Here we exploit the fact that
the color channels follow the luminance component. So we
use the motion vectors computed based on the Y channel for
the color channels — Cb and Cr (motion vectors are scaled by 2
in both x and y direction to account for down sampling).
To find the best block match that would yield us the best
predicted image we should ideally use full search algorithm.
However full search is very slow for practical considerations.
So we had to come up with some faster algorithm for block
matching. In order to do so, we first had to estimate the motion
range that would occur in the x and y direction. So we used 7
out of the 14 images provided for the training phase.

We chose a block size of 32 x 32 to perform the block
matching. The choice of the block size was chosen such that
we would want to minimize the bit rate spent on motion
vectors and at the same time be able to capture all features in
the image correctly, i.e. have as small a residual image as
possible. Although block size of 8 x 8 is really good for
prediction it is way too small, in reference to the size of the
image we were encoding. We found that 32 x 32 was optimal
for both.

B. Determining the search window size

Generally in stereo images we assume the motion
disparity to be mostly concentrated in the x direction.
However the training set had very large motion both in the x
and the y direction. Here in the training phase, we perform an
exhaustive search to compute the statistics of the x and y
disparity/motion. We chose a range from -250 to +250 with a
step size of 1 for the x direction and -150 to + 150 with a step
size of 1 for the y direction. The below histogram plot for the
y motion vector as an example is shown below (Figure 6).
These statistics collected for 7 training images helped us fix
the search window range.

Motion vectors based on training data

r r
=1 @
=1 =

Frequency
o
=

100

a
-100 -50 o 50 100
Motion vector

Figure 6 : Statistics for motion vector in the y direction (for 7 images
in the training set)

C. Hierarchical block matching

Based on the search range we computed earlier we came up
with a strategy to perform the block matching over a large
range quickly and efficiently. We performed a hierarchical
block matching with three levels of search. The first two levels
are coarse search and the third level is a fine search algorithm.
By doing a coarse — fine search we were able to search over a
large range and at the same time perform faster. The metric
used for the best match was SAD (Sum of absolute
differences).

The block that minimizes the SAD would be chosen as the
best match. We also choose a different step size for the x and y
disparity as their search range varies.

The hierarchical block matching algorithm is as follows:
For the current block in the right image, do the following
search on the reconstructed left image.

Step 1: Search over -200 to +200 pixels with a step size of
12 for the x direction and -80 to + 80 with a step
size of 5 for the y direction.

Step 2: Find the block that minimizes SAD.

Step 3: Once the best block is found, with that Index for x
and y as the next level's zero motion vector,
proceed to the second coarse search level.

Step 4: In the second level, search over the range of the
first level's step size for the x and y direction. In
this case, search over -12 to +12 pixels in the x
direction and -10 to + 10 in the y direction. The
step size for this level is halved. So for the x
direction the step size is 6 and for the y direction
the step size is 3.

Step 5: Find the block that minimizes the SAD at the
second level.

Step 6: The third level is the fine search where the step
size is 1 for both the x and y direction. Here the
range is calculated as before. The x range in this
level is from -6 to +6 pixels and for y it is -3 to +3
pixels.

Step 7: The block that minimizes the SAD in this level is
the best match found.

The motion vectors thus obtained are then transmitted for both
the x and y direction. These Y channel motion vectors are then
scaled by a factor of 2 to predict the Cb and Cr right images.
Here we choose a block size of 16 x 16 for the Cb and Cr
channels so as to directly work with the derived motion
vectors. A sample of the predicted right image is shown below
in Figure 7.

Figure 7 : Predicted Right Image

200 400 E00 aoo

Figure 8 : Residual Image

=10 Residual Distribution

3.5

2.5

Freguency

a
-150 -100 -a0 o a0 100 150 200
Residual values

Figure 9 : Distribution of Residual values

The residual images obtained by subtracting the predicted
image from the original right image are encoded in the same
fashion as the reference image[5][6]. A sample of the residual
image is shown in Figure 8. The residual distribution is shown
in Figure 9. As expected we can see that the residual computed
is small.

The motion vectors and the encoded residual bit stream are
then transmitted to the decoder. The gain obtained by doing an
entropy coding on the motion vectors versus directly
transmitting the motion vectors to the decoder was way too
small. So we decided not to encode the motion vectors for less
computational complexity.

IV. DECODING OF LEFT AND RIGHT IMAGES

In this part, we describe in detail the construction of
decoder for the left and right images.

A. Decoding the left image

First, the dc coefficients are decoded. Each coefficient is
decoded by simply taking the previous decoded coefficient and
adding the difference (which was transmitted by the encoder)
to it. For the ac coefficients, the binary bit streams for the runs
and levels are separately fed in to the arithmetic decoder
(which has the a-priori probability distributions of the various
symbols hard-coded in it). It returns a stream of runs and a
stream of levels, which are then fed into a run-level decoding
block. This block reconstructs the quantized ac coefficients.

Finally the ac and dc coefficients are fit together in an
appropriate order to obtain the 32x32 block of quantized
coefficients. The decoder then de-quantizes this by multiplying
with the appropriate step size and takes an inverse DCT to get
the reconstructed left image.

B. Decoding the Right Image

Each channel of the right image was first predicted from the
reconstructed left image using the motion vectors that were
transmitted. Then the residual for each channel was separately
decoded using exactly the same process as described in section
A above. Once the prediction and the residual was available,
each channel of the right image was reconstructed by simply
adding together the prediction and the residual.

V. RESULTS

We compared the performance of our overall stereo image
coding algorithm with JPEG as the baseline. The results of the
comparison are tabulated in Figure 10 and illustrated through a
scatter plot in Figure 11. It can be seen that the performance of
our algorithm is comparable to JPEG and even beats JPEG for
some images.

Our compression Jpeg compression

Images PSNR Bit rate Bit rate

1 37.5 1.6204 1.5883

2 376 0.5718 0.5624

3 378 0.1445 01613

4 37.3 0.4063 0.3355

5 37.5 0.5734 0.5338

<] 3r.6

7 3r.5

8 A

9 3.6

10 373

11 ar.7 0.6881 £.6313

12 378

13 375

14 3r.8

Figure 10 : Results obtained on the provided 14 images

Performance comparison with Jpeg

25
P *
= |
a y ..
2 n | = Qur compression
3 ™ | | + Jpeg compression
£ 1
£ y
a u
05 n u
L o u
|
o]
o] 2 4 6 8 10 12 14 16

Training images
Figure 11 : Comparison of performance of our algorithm with
JPEG (for both Left and Right Views)

For the test set, we achieved a file size of approximately
140kB (averaged over all seven images).

An example of decoded image from the training set is
provided in Figure 12.

Figure 12 : Reconstructed Image

VI. CONCLUSION AND FUTURE WORK

Stereo image compression using DCT and entropy coding
for the reference image , and disparity and residual encoding
for the right image has been discussed in this report. From the
analysis performed above, we can see that block DCT, Run
Level coding, followed by Arithmetic coding performs quite
well as compared to Huffman encoding. We successfully beat
the JPEG standard with our algorithm for several images. In
other cases, the performance was comparable.

Listed below are some other possible extensions of our
work :

1. Intra mode selection can be employed for encoding
the right image, when disparity prediction and
encoding residuals does not give good performance.

2. Copy mode selection can be used for encoding the
right image, when motion vector is zero and residual
values are significantly small.

3. Sub-pel accuracy in block matching can be
implemented to achieve a better motion compensated
right image.

4. Variable block sizes in block matching to get better
accuracy.

ACKNOWLEDGEMENT

We would like to thank Prof. Girod, Prof. Wiegand and the
TAs Hari and Mina for providing us great feedback and
guidance. This helped us a lot in refining our algorithm to
perform better.

REFERENCES

[1] Mark S. Moellenhoff and Mark W. Maier, “DCT Transform
Coding of Stereo Images for Multimedia Applications,” IEEE
Transactions On Industrial Electronics, Vol. 45, No. 1, February
1998.

[2] A. Agarwal, “Compressing Stereo Images Using a Reference
Image and the Exhaustive Block Matching Algorithm to
Estimate Disparity between the Two Images “International
Journal of Advanced Science and Technology Vol. 32, July,
2011.

[3] M.Y.Nayan, E.A.Edirisinghe, H.E.Bez ,”Baseline JPEG-Like
DWT CODEC for Disparity Compensated Residual Coding of
Stereo Images” ,IEEE Proceedings of the 20th Eurographics UK
Conference ,2002.

[4] T. Tao, J. Choon Koo, H. Ryeol Choi, "A Fast Block Matching
Algorthim for Stereo Correspondence",CIS 2008.

[5] T.Frajka, K.Zeger, "Residual Image Coding for Stereo Image
Compression",International Conference on Image Processing
(ICIP)Rochester, New York, vol. 2, pp. 217-220, October 2002.

[6] Mark S. Moellenhoff, Mark W. Maier, "Transform Coding of
Stereo Image Residuals",JEEE Transactions on Image
Processing, Vol.7, No.6, June 1998.

[71 Won-Ho Kim, Jae-Young Ahn, Sung-Woong Ra, "An Efficient
Disparity Estimation Algorithm for Stereoscopic Image

Compression",JEEE Transactions on Consumer Electronics,
Vol. 43, No. 2, May 1997.

APPENDIX

Distribution of Work
Deepa: Block Matching, Residual Computation, Training for
Motion Estimation.
Divya: Block DCT
Simulation of test results
Debabrata : Differential encoding, Arithmetic coding and decoding,
Training probability tables for arithmetic encoder and decoder

and Quantization, Huffman Encoding,

Report and Presentation had equal contribution from all team
members

	I. introduction
	II. encoding of the left image
	A. Block based DCT
	B. Quantization of DCT coefficients
	C. Differential encoding of DC coefficients
	D. Zig-Zag scan and Run Level encoding of AC coefficients
	E. Entropy Coding
	F. Comparison with JPEG

	III. Block matching and encoding of the right image
	A. Block Matching
	C.	Hierarchical block matching

	IV. Decoding of left and right images
	A. Decoding the left image
	B. Decoding the Right Image

	V. Results
	VI. Conclusion and future work
	ACKNOWLEDGEMENT
	references

