A brief history of streaming media

1992
- MBone
- RTP version 1
- Audiocast of 23rd IETF mtg

1994
- Rolling Stones concert on MBone

1995
- ITU-T Recommendation H.263
- RealAudio launched

1996
- Vivo launches VivoActive
- Microsoft announces NetShow
- RTSP draft submitted to IETF

1997
- RealVideo launched
- Microsoft buys VXtreme
- Netshow 2.0 released
- RealSystem 5.0 released
- RealNetworks IPO

1998
- RealNetworks buys Vivo
- Apple announces QuickTime Streaming
- RealSystem G2 introduced

1999
- RealNetworks buys Xing
- Yahoo buys Broadcast.com for $5.7B
- Netshow becomes WindowsMedia

2000
- RealPlayer reaches 100 million users
- Akamai buys InterVu for $2.8B
- Internet stock market bubble bursts
- WindowsMedia 7.0
- RealSystem 8.0
Internet Media Streaming

Best-effort network
- low bit-rate
- variable throughput
- variable loss
- variable delay

Challenges
- compression
- rate scalability
- error resiliency
- low latency
On-demand vs. live streaming

Media Server → Internet → DSL → Client

Internet

● 1000s simultaneous streams

Client

Media Server

„Producer“

56K modem

wireless
Live streaming to large audiences

“Pseudo-multicasting” by stream replication
Protocol Stack for Internet Streaming Media

- **Application**
- **Transport Layer**
 - TCP or UDP
- **Network Layer**
 - IP
- **Link Layer**
 - Ethernet 802.11

Server to Client

- Session control: RTSP over TCP or UDP
- Control: RTCP over TCP
- Transmission: RTP over UDP

Client to Server

- IP
- Ethernet 802.11

Server

Packet Network

Client
RTP: A Transport Protocol for Real-Time Applications

- Defined by the IETF: RFC 1889
- Intended to provide a means of transporting real-time streams over Internet Protocol (IP) networks
- RTP packet

<table>
<thead>
<tr>
<th>RTP header</th>
<th>Payload header</th>
<th>Payload</th>
</tr>
</thead>
</table>

- RTP is session oriented (IP address and UDP port number)
- RTP provides data for the application to perform
 - Source identification
 - Packet loss detection and packet resequencing
 - Intra-media synchronization: playout with jitter buffer
 - Inter-media synchronization: e.g., lip-synch between audio and video
- IP/UDP/RTP header: 20+8+12=40 bytes
RTP Header Format

Sampling instant of the first data octet
- Multiple packets can have the same timestamp
- Not necessarily monotonic
- Used to synchronize different media streams

Payload type
- Identifies the synchronization source
- Identifies the contributing sources

Incremented by one for each RTP packet:
- Packet loss detection
- Restore packet sequence

Identifies the synchronization source

Identifies the contributing sources
RTCP (RTP Control Protocol)

- RTCP augments RTP by periodic transmission of control packets
- Feedback on the quality of data distribution
- Receiver reports (RR): statistics about the data received from a particular source

Examples
- Fraction of RTP data packets lost since the previous RR packet
- Interarrival jitter: Estimate of the variance of the RTP data packet interarrival time distribution
- RTP payload-specific feedback information, e.g.,
 - Intra-frame requests
 - Information about lost or damaged picture areas
Real Time Streaming Protocol

- Client-server multimedia presentation control protocol (RTSP: RFC 2326)
- Each presentation and media stream may be identified by a URL rtsp://
- RTSP also supports control of multicast events

![Diagram of Real Time Streaming Protocol]

- Web server
- Media server
- Internet
- Client
- HTTP GET
- Session description
- Setup/ Teardown
- Play/ Pause/ Record
- RTP video/audio
- RTCP
Network congestion causes burst loss and excessive delays.

All flow-control and error-control functions are left to the terminals.

Relies on voluntary fair sharing of network resources by sessions: TCP sets the standard.

For streaming media, it is required to dynamically adjust the streaming media bit-rate to match network conditions.
TCP-friendly streaming

Idea: Explicitly estimate the rate that would be available to a TCP connection transferring data between the same source and destination TCP-friendly rate control.

\[r \approx \frac{1.22 \cdot MTU}{RTT \cdot \sqrt{p}} \]

- data rate
- maximum transfer unit
- mean round trip time
- mean packet loss rate

[Mahdavi, Floyd, 1997]
[Floyd, Handley, Padhye, Widmer, 2000]
TCP-friendly streaming (cont.)

- Maximum packet size (MTU) known by source (e.g., 1500 Bytes for Ethernet)
- Mean round trip time from RTP timestamps
- Mean packet loss rate from RTCP receiver reports
- Constrain maximum data rate accordingly
Receiver-Driven Layered Multicast

- Video and audio are encoded using layered, scalable scheme
- Different layers are transmitted on different multicast groups
- Each receiver subscribes to the base layer and depending on the available data rate to one or more enhancement layers
- Adaptation is carried out by joining or leaving groups

[McCanne, Jacobson, Vetterli, 96]
Layered Video Coding

Spatial scalability:
- Spatial resolution enhancement by additional layers

Temporal scalability:
- Frame rate increases with additional layers

- Second Enhancement layer
- First Enhancement layer
- Base layer
Hierarchical frame dependencies (MPEG, H.263)

- Each I-picture starts a "Group of Pictures (GOP)" that can be decoded independently.
- Encoder can flexibly choose I-picture, P-pictures and B-pictures.
- B-pictures are not reference pictures for other pictures and hence can be dropped for temporal scalability.
Example layers with MPEG frame structure

- Base layer + first + second enhancement layer

- Base layer + first enhancement layer

- Base layer
SNR Scalability: Fine Granular Scalability (FGS) for MPEG-4 Video
FGS is inefficient for low bit-rates

H.26L with/without FGS option
Foreman sequence (5fps)

Base layer
20 kbps

Efficiency gap

Enhancement layer variable bit-rate
Dynamic Stream Switching: SureStreams

- SureStream Technology by RealNetworks [Lippmann 99] [Conklin, Greenbaum, Lillevold, Lippman, Reznick, 2001]
- Single-layer encoding at multiple target bitrates

Illustration of operational area for 20% stream-to-stream rate difference
Dynamic Stream Switching: SP-frames

- SureStreams can only switch at the next I-frame
- S-frames [Färber, Girod 97]
- H.26L: SP-frames [Karczewisz, Kurceren 01]
 - SP-frames require fewer bits than I-frames
 - Identical SP-frames can be obtained even when different reference frames are used

Switching between bitstream 1 and 2 using SP-pictures
Dynamic Stream Switching: SP-frames (cont.)

- SP-frames are placed wherever one wants to enable switching from one stream to another.
- When switching from Stream 1 to Stream 2, S_{12} is transmitted.
- Although S_2 and S_{12} use different previously reconstructed frames as a reference, their reconstructed values are identical.
- No error introduced.
- SP-frames have lower coding efficiency than P-frames but significantly higher coding efficiency than I-frames.
SP-frames: performance gain

- Periodic insertion of I-frames

 \[I \ P \ P \ P \ I \ P \ P \ P \ I \ P \ P \ P \ I \]

- Periodic insertion of SP-frames

 \[I \ P \ P \ P \ P \ SP \ P \ P \ P \ SP \ P \ P \ P \ SP \]

- I-frames or SP-frames every second for test sequence „News“

From: [Karczewisz, Kurceren 01]
Forward Error Correction

- For packet-based transmission, FEC can be employed across packets (erasure decoding)
- Erasures → the exact position of missing data is known
- Transmission of redundant data for recovery of lost packets at the receiver (redundancy packets)
- Exclusive OR (XOR) allows to compute one parity packet for a set of original packets

 \[
 \begin{align*}
 &\text{data packets} \\
 &\begin{array}{c}
 1 0 0 1 1 \\
 0 0 1 0 1 \\
 \end{array} \\
 &\text{XOR} \\
 &= 1 0 1 1 0
 \end{align*}
 \]

- RFC 2733: An RTP Payload Format for Generic Forward Error Correction
 - Media independent
 - XOR-based
Erasure Codes

- Idea: k blocks of source data are encoded at the sender to produce n blocks of encoded data in such a way that any subset of k received blocks suffices to reconstruct the source data.

from [Rizzo 97], for more info [Blahut 84],[Lin, Costello 83]
Erasure Codes: Packet Loss Protection

- k information packets, $n-k$ redundancy packets
- Resulting n packets are called block of packets (BOP)
- Packets are the rows of the BOP
- Codewords are calculated across the columns, e.g., Reed-Solomon codes over $\text{GF}(2^8)$
- No additional delay at the sender (information packets can be sent immediately)
FEC performance

- FEC is the preferred error-control scheme for multicast or low-latency streaming applications.
- The reconstruction delay at the receiver increases with k.
- Parity packets are particularly efficient for multicast since a single parity packet can repair the loss of different data packets seen by different receivers.
- Relationship between FEC and congestion control (CC):
 - CC reduces network load for high error rates.
 - FEC increases redundancy for high error rates.
 - Contradicting approaches.
 - Solution: FEC in combination with rate control.
Priority Encoding Transmission

- Specify different priorities for different data segments
- According to the assigned priority, PET generates different amount of redundancy
- **Example:** Protect I frames more than P frames more than B frames (100%, 33%, 5%)
- **Example:** PET in combination with scalable coding [Horn, Girod 99]

[Albanese, Blömer, Edmonds, Luby, Sudan 96]
Data partitioning

- Without data partitioning: RTP packet contains full slice as payload
- With data partitioning

Prioritization or FEC for more important packets
Automatic Repeat reQuest (ARQ)

- Missing packets are retransmitted upon timeouts or explicit requests from the receiver
- ARQ-based schemes consist of three parts
 - Packet loss detection
 - Acknowledgment strategy
 - Indicate which data have been received (positive ACKs)
 - Indicate which data are missing (negative ACKs or NACKs)
 - Retransmission strategy
 - Go-Back N
 - Selective Retransmission
 - Trade-off simplicity of the receiver implementation and transmission efficiency
Packet Loss Detection

- Retransmitted packets must arrive at the receiver before playout deadline
- Early detection of packet loss is the key to maximize the number of retransmission attempts

Gap Detection

Sender: 1 2 3 4 5 6 7 8 9 10 11
Receiver: 1 2 4 5 6

Sequence number: 1 2 3 4 5 6 7 8 9 10 11

Timeout Detection

Sender: 1 2 3 4 5 6 7 8 9 10 11
Receiver: 1 2 4 5 6

Sequence number: 1 2 3 4 5 6 7 8 9 10 11

Deadline: $T_p + \Delta T$

- P2 due
- P3 due
- T_p
- ... P7 due
- P8 due
- P3 lost
- P7 lost
- P8 lost
Packet Loss Detection

- Gap detection
 - Detection delay depends on the inter-packet time
 - Packet loss often occurs in bursts → larger gaps

- Timeout detection
 - Limited applicability for large delay jitter

- Combination
 - NACK is sent when either scheme declares packet to be lost

- Nice extension in [Sze, Liew, Lee 01]
 - Gap detection even for retransmitted packets
Gap Detection for Retransmitted Packets

- Retransmission sequence number (RSN) in all packets
- The retransmitted packet and all subsequent ordinary packets will be marked with the RSN until the next NACK arrives
- The retransmitted packet corresponding to the NACK should be the first packet to arrive at the receiver with the new RSN

[Sze, Liew, Lee 01]
Instead of trying retransmission indefinitely to recover missing packets, the number of retransmissions can be limited [Marasli, Amer, Conrad 96]

- Limit on maximum number of retransmissions
- Limit on maximum delay

UDP **TCP**

No reliability **Partial reliability respects the loss tolerance of the application** **Full reliability at the cost of increased delay and reduced throughput**

1) Detect lost packet
2) Decide whether or not to recover it
Delay-constrained retransmission

- **Receiver-based**: request to retransmit packet N if

 $$T_c + RTT + \Delta T < T_d(N)$$

 - T_c: current time
 - RTT: round trip time estimate
 - ΔT: safety interval
 - $T_d(N)$: playout deadline for packet N

- **Sender-based**: retransmit packet N if

 $$T_c + \frac{RTT}{2} + \Delta T < T_d'(N)$$

 - T_c: current time
 - RTT: estimate of round trip time
 - ΔT: safety interval
 - $T_d'(N)$: estimate of playout deadline
FEC versus ARQ

- Open-loop error control with FEC
 - No feedback required
 - Suitable for large groups, large RTTs, stringent delay requirements
 - Individual loss dominates: Transmission of redundant packets can be used to allow the receivers to recover from independent packet losses
 - Redundancy determined by maximum loss probability

- Retransmission-based error control
 - Suitable for unicast or small groups
 - Feedback explosion for large groups
 - Error recovery delay depends on RTT
 - Non-interactive application, relaxed delay requirements
 - Automatic adaptation to varying packet loss rates
Hybrid Error Control (ARQ/FEC)

- A major difficulty when using FEC is to choose the right amount of redundancy.
- Hybrid ARQ type II [Wicker 95, Nonnenmacher, Biersack, Towsley, 97]
 - No redundancy with the first transmission.
 - Send parity packets after request for retransmission.
 - Efficient for reliable multicast to a large number of receivers.

![Diagram showing first and second transmissions with redundancy for retransmission.]

DATA retransmission

Redundancy retransmission
Rate-Distortion Optimized Streaming (RaDiO)

- Media unit is put into packet for transmission
- Packet may be retransmitted or sent multiple times
- Requirements
 - Meet target rate
 - Maximize reconstruction quality
- Packet scheduling problem: which packets should be selected for transmission and when?
- Rate-distortion framework proposed, e.g., in [Podolsky, McCanne, Vetterli 2000] [Miao, Ortega 2000] [Chou, Miao 2001]
RaDiO: Rate-Distortion characterization

- Example packet dependencies
 - IP PPP PPP
 - IBB BPB BB

- Describe packet n
 - Size in bytes B_n
 - Distortion reduction Δd_n
 - Delivery deadline t_n

[Chou, Miao 2001]
RaDiO: Decision Tree with Finite Time Horizon

- Markov decision tree for one packet
- Construct combined tree for all packets
 - Limit the number of packets sent per transmission opportunity
 - Omit inefficient subtrees (not on convex hull in RD plane)

[Chou, Miao 2001]
RaDiO: Observation Probability Model

- Assign observation state transition probabilities using packet delay and loss model

![Graph showing packet delay and loss probability](image)

- Typical assumptions:
 - Identical, independent delay/loss pdfs for each transmission opportunity
 - Delay/loss pdf independent from RaDiO actions (no self-congestion)

[Chou, Miao 2001]
RaDiO: Determine Optimum Decision

- Consider entire sequence of actions between now and time horizon
- Minimize Lagrangian cost function \(J = D + \lambda R \), e.g., iteratively by considering one action at a time
- Calculate expected distortion \(D \) for each sequence of actions, considering packet dependencies, delay distribution, and acknowledgment probabilities
- Calculate expected rate \(R \) for each sequence of actions, considering delay distribution and acknowledgment probabilities
- Repeat for each transmission opportunity

[Chou, Miao 2001]
Video Distortion with Self Congestion

Good Picture quality

Bad picture quality

Self congestion causes late loss

![Graph showing the relationship between bit-rate and PSNR (Peak Signal-to-Noise Ratio) in dB. The graph indicates that as the bit-rate increases, the PSNR also increases, suggesting improved picture quality. At lower bit-rates, the PSNR is lower, indicating poorer picture quality. At higher bit-rates, the PSNR is higher, indicating better picture quality.]
Effect of Playout Delay and Loss Sensitivity

\[D = D_0 + \frac{\theta}{(R - R_0)} + \kappa e^{-\frac{(C-R)T}{L}} \]

Foreman

Simulations over ns-2
Link capacity 400 kb/s

Salesman

40% headroom

10%
Modeling Self-Congestion for Packet Scheduling

- Rate-distortion optimized packet scheduling (RaDiO) typically assumes independent delay pdfs for successive packet transmissions \([\text{Chou, Miao, 2001}]\)
- Model delay pdf by exponential with varying shift

\[\text{Probability distribution} \quad \text{delay}\]

\[\text{[Setton, Girod, 2004]}\]
CoDiO vs. RaDiO

Sequence: Foreman
Packet loss rate 2%
Link capacity 400 kb/s
Propagation delay: 50ms

Congestion (ms)

Playout deadline (s)

PSNR (dB)

Transmitted rate (kb/s)

Playout deadline (s)