
Motion-sensing Devices in the Assistive Technology Arena

Owen R. Edwards, MEng

Rehabilitation Engineering Research Fellow,
Smith-Kettlewell Eye Research Institute
& Bioengineer, Stanford University School of Medicine

Introduction

- Emerging technologies for Rehab & Assistive Tech.
 - MEMS devices
- Touch screen device accessibility
 - Braille & the “WearaBraille”
- Wearable Gait Analysis

Emerging technologies

- Users are increasingly tech-savvy
 - Less intimidated by technology
 - Expect access to new devices
- Rehab and A.T. can leverage technologies from:
 - Consumer Electronics
 - Mobile Devices
 - Game Consoles

MEMS sensors

- “Micro-Electro-Mechanical Systems”
- Semiconductor devices, combine:
 - mechanical sensor structure
 - electronic measuring and signal processing circuits
- Accelerometers, Gyroscopes, Magnetometers
- Used in Wii Remote, Apple iPhone, digital cameras

Accelerometers

- Accelerometers measure:
 - Static orientation relative to gravity
 - Linear acceleration / movement

Gyros and Magnetometers

- Gyroscopes measure rate of rotation:
 - Wii MotionPlus accessory
- Magnetometers measure orientation relative to Earth's magnetic field:
 - iPhone 3G S

Touch screens: *a barrier to accessibility?*

Touch screens

- Portable devices increasingly use touch screens as the main user interface
- Touch screens are difficult for:
 - Blind & visually impaired users
 - Physically impaired users
 - Use while driving?!
- Auditory (TTS) output options, but Speech Recognition has limitations
- Are there other options for input to the device?

Intro to Braille

■ Standard Braille cell is 6 dots:

a b c d e 1 2 &
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

- All information is on the edge of the cell
- Different Braille alphabets
 - Standard English (has “number sign”, abbreviations “th”, “ed” etc.)
 - Computer Braille (letters and numbers are distinct)
- A form of “printing”, i.e. an “output” technology?

Braille typing: The Perkins Brailler

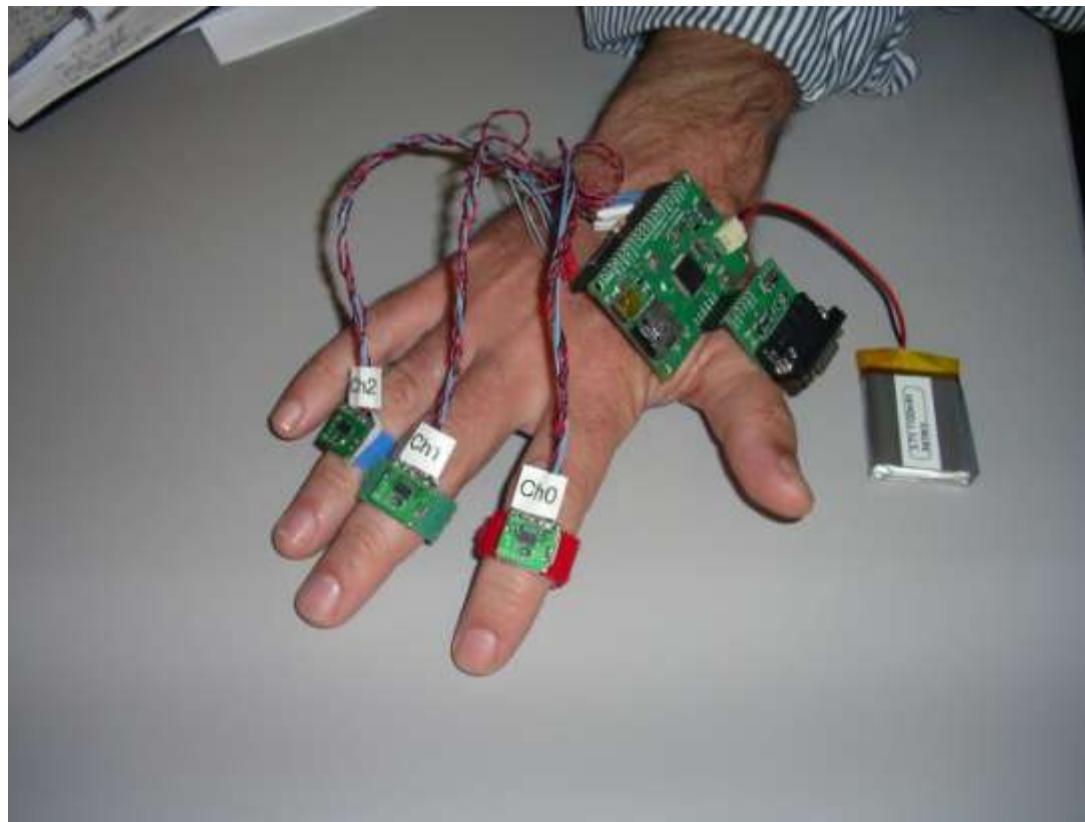
- A Braille typewriter
- Direct entry of Braille
 - a key for each “dot”; hence “chording”
 - space, linefeed, backspace
- Heavy!
- An existing interface paradigm

Touch Graphics “Power Chord”

- Same 9 keys
- USB interface to PC
- No special software drivers
- Extended “chord” combinations for:
 - Cursor movement
 - CTRL-ch, ALT-ch combinations

Can we “type” without a keyboard?

- Finger-mounted accelerometer:
 - Small
 - Low-cost
 - Low-power
 - 3D, 8G, 400Hz sampling
 - How does the physical interface affect the accelerations?
- Could we detect typing on any available firm surface?


“Tap” detection & discrimination

- Braille keyboard has only one key per finger
- Absolute magnitude of 3D acceleration vector is not a good discriminator
- “Tap” characterized by rapid change in acceleration, especially change in direction of acceleration
- Derivative of acceleration (“jerk”) could be used
- “Dot product” of successive acceleration vectors gives a scalar measure of direction change

“Taps” to “chords”

- All chording keyboards need to combine keypresses
- Difficult to detect “key up” (un-tap?) event
- Combine several “taps” into a “chord” by using a time window
 - Average typing of 60 WPM = 5 characters / second
 - World record for typing is 150 WPM = 12.5 characters / second
 - A fixed window of 50-100 mS works, but an adaptive scheme is better

WearaBraille one-hand prototype

USB keyboard emulation

- Human Interface Device (HID) class of USB device
- Well-defined protocol for PC connection:
 - No special device drivers
 - WearaBraille appears as “just another keyboard”
- Extensible as a “composite device”:
 - Both a keyboard ...
 - ... and a “special control device” (joystick, game controller, etc)
- USB supplies power for WearaBraille
- Phones and PDAs often don’t have USB

Two-handed operation

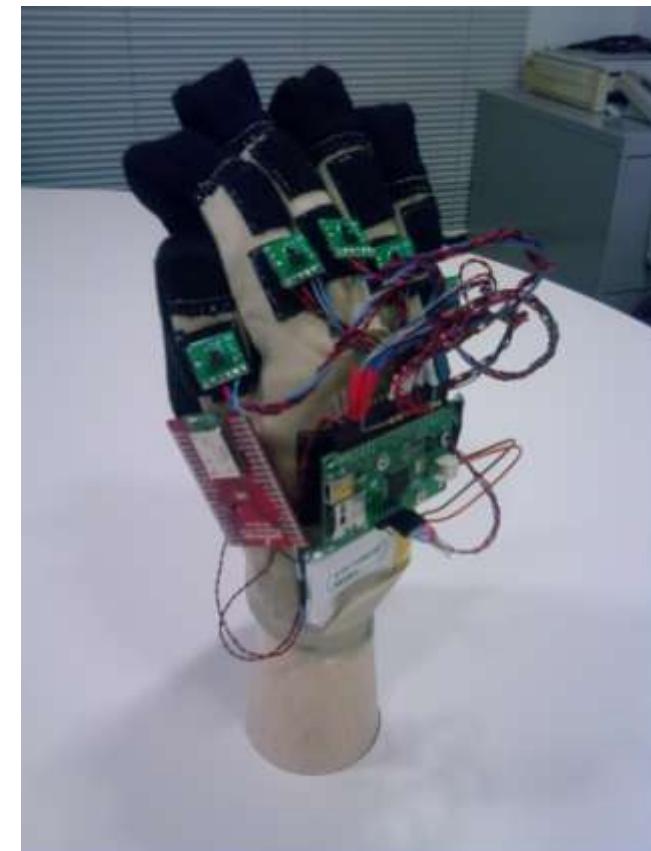
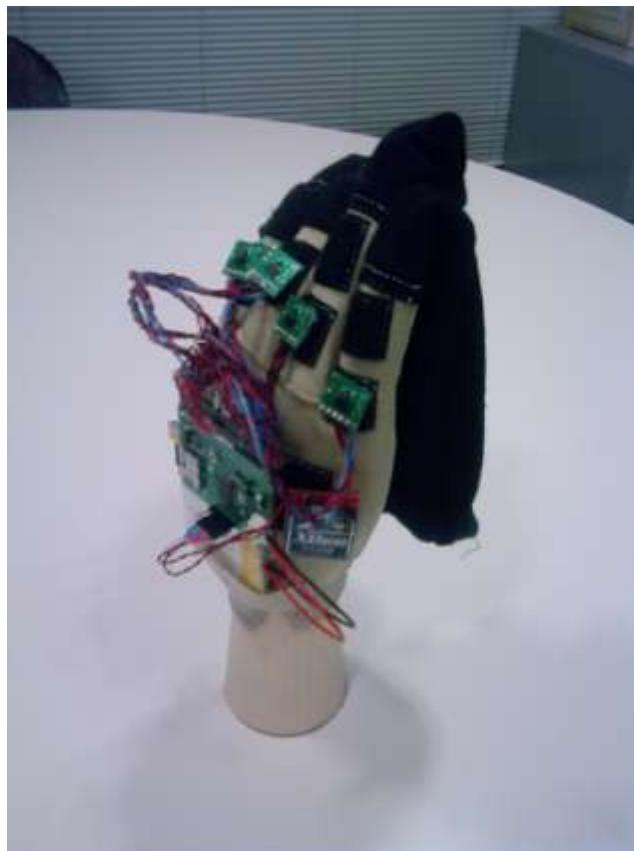
- Need to integrate “taps” between hands
- Need low-latency communication between hands
- Ideally a wireless link
- 10 fingers & thumbs -> 10 key operation: additional “chords” possible with independent thumb operation

Communication between hands

- Several new low-power wireless communication protocols:
 - Zigbee
 - ANT
 - Bluetooth
 - Wireless USB (aka “UWB”)
- Choice of system architecture (division of processing, communication with PC/PDA/phone)
- Many portable devices support Bluetooth
- Need batteries to power WearaBraille

Zigbee (IEEE 802.15.4)

- Low-power, low-complexity, low-cost wireless for “monitoring & control”
- Peer-to-peer, automatic networking
- Typically “serial port replacement”
- Power/range trade-off options:
 - Standard : 130mW / 400 ft (133 ft indoor)
 - PRO: 970mW / 1 mile (300 ft indoor)

Bluetooth

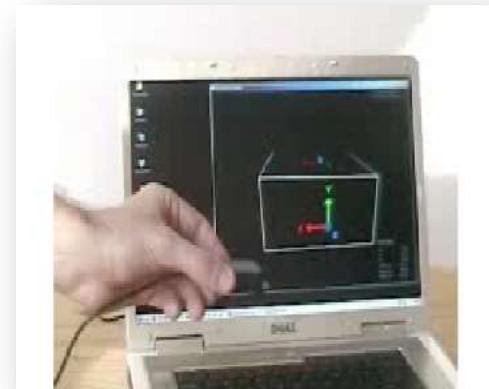
- Short-range “cable replacement” personal area network (“PAN”)
- Profiles
 - Headset Profile (HSP)
 - Hands-Free Profile (HFP)
 - Advanced Audio Distribution Profile (A2DP)
 - Human Interface Device Profile (HID)
 - FTP, DUN, SPP, OPP, BPP etc...
 - Health Device Profile (HDP)
- Not all devices support all profiles
- Bluetooth Low Energy (“more than a year on a button cell battery”)

Two-handed WearaBraille prototype

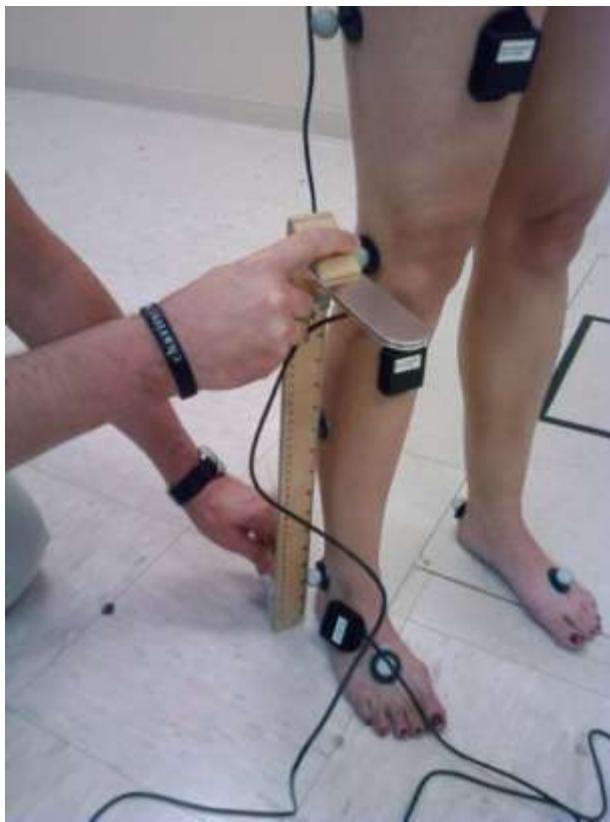
Other considerations for WearaBraille

- “On” / “Off” sequence -> “Wearability”
- User feedback (auditory, tactile)
 - Local (on the gloves)
 - Remote (PC / PDA)
- Glove construction & mechanical interface
- User training / WearaBraille “learning”
- Battery life & low-power operation
- Interface to devices that do not support Bluetooth HID profile

Wearable Gait Analysis


Wearable sensors for motion capture (vs. optical system)

- Used in the entertainment industry:
 - Movies
 - Video games
- Each sensor combines:
 - A MEMS Accelerometer
 - A MEMS Gyro
 - (sometimes) A MEMS Magnetometer
- Compared to traditional optical motion capture:
 - ✓ Larger “capture space”
 - ✓ Occlusion-free
 - ✗ Less accurate
 - ✗ Subject to drift



MotionNode sensors

- Combine MEMS Accelerometer, Gyroscope, Magnetometer
- Small, lightweight package
- Easy connection to PC via USB
- 'Service' process on PC (Windows or Linux) calculates absolute orientation from sensor data
- Comprehensive Software Development Kit (SDK) supports C++, Matlab, Python etc.

MotionNode sensors compared to optoelectrical 3D gait analysis

Using the MotionNode data

- MotionNode software outputs:
 - Raw sensor data
 - Calculated orientation of the device
- From this, we can derive:
 - Repetition rate
 - gait cycle duration
 - Significant events, separated by cycle duration
 - initial contact with the floor
 - Relative orientation of sensors
 - knee & ankle flexion through gait cycle

Potential applications

- Gait analysis in a “community setting”
- Detect gait abnormalities as they happen
- “Functional Electrical Stimulation” (FES) for improvement of gait abnormalities

Summary

- New technologies can be “re-purposed” into A.T. & rehab devices
- MEMS and wireless technologies show promise
- Plenty of “needs”, but obstacles include:
 - Cost
 - Small potential market
 - Hard to make anything “general purpose” -> smaller market