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Assistive Robotics and Manipulation
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Robotic Hardware

Design Robotic Autonomy
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Do, W. K., Jurewicz, B., & Kennedy, M. (2022, September). DenseTact 2.0: Optical
Tactile Sensor for Shape and Force Reconstruction. ICRA 2023 accepted

Do, W. K., & Kennedy lll, M. (2022). DenseTact: Optical Tactile
Sensor for Dense Shape Reconstruction. /[EEE, 6188-6194.
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Assistive Robotics and Manipulation
Laboratory

Li, A., Wu, P,, & Kennedy Ill, M. (2021). Replay
Overshooting: Learning Stochastic Latent Dynamics
with the Extended Kalman Filter. /[EEE International
Conference on Robotics and Automation (ICRA)
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Ng, E., Liu, Z., & Kennedy, M. It Takes Two:
Learning to Plan for Human-Robot
Cooperative Carrying. ICRA 2023 Accepted

Guptasarma, S., & Kennedy, M.

(2021). Considerations for the Control Design of
Augmentative Robots. /[EEE IROS Workshop on
Building and Evaluating Ethical Robotic Systems.

A

Past Trajectory

Predicted Trajectory
Actual Trajectory

Wang, W., Raitor, M. ., Collins, S., Liu, K. ., & Kennedy, M. Trajectory and
Sway Prediction Towards Fall Prevention ICRA 2023 accepted.
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Assistive Robotics and Manipulation

Enable & amplify efforts of
a human collaborator

Perform complex
service tasks

Leverage situational
awareness and human
observation to

mobilize with
transparency

Leverage situational
awareness to
anticipate service
needs

Mission

The mission of the Assistive Robotics and Manipulation Lab is to
develop intelligent, assistive technology that improves human life
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Assistive Robotics and Manipulation Laboratory (ARMLab)

Enable & amplify efforts of
a human collaborator

Perform complex
service tasks

Leverage situational
awareness and human
observation to

Leverage situational
awareness to

anticipate service

needs

mobilize with
transparency

Assistive Robotics and Manipulation
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Passive versus Active Assistive
Devices
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Assistive Technology Design Process

B create lo-res objects and experiences
B role
o

-

le play to understand context and key feature
build to think & learn

E: <"IIE}IIH||HI"}

B guidelines for
evaluating project
work critically

qQuick

kl
PROTOTYP

B reframe and create human-
centric problem statements

B identify meaningful

surprises and tensions B openly giving &

o far ineiahtc : receiving feedback
® infer insights B test with customers L )

to refine solution ® integrating

and gather data feedback

B gain deeper empathy
® embrace failure

d.school Executive Education

Hosso Plattner Institue of Design at Stanford University *not necessarily linear, apply as needed ©£2019
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Assistive Technology

Passive Devices - Body Powered

Arm Dynamics: https://www.armdynamics.com/upper-limb-library/introduction-to-body-powered-prostheses

8 Stanford University


https://www.armdynamics.com/upper-limb-library/introduction-to-body-powered-prostheses

Assistive Technology

Passive Devices - Body Powered

P https://youtu,be/Eodwil AR3ql (0-40s)
RN 9 Stanford University
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https://www.youtube.com/watch?v=EodwiLAR3qI
https://youtu.be/EodwiLAR3qI

Assistive Technology

Passive Devices - Body Powered

~

Carbon Fiber Reinforced polymer for running prosthesis
https://youtu.be/42ml6kDvPeE (0-30s)
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https://youtu.be/42mI6kDvPeE

Assistive Technology

Active Devices

What do you do when input does not passively map to the desired output/action/result?
Active Control Devices must be employed to reach the target result

What Is the What action should the
person’s Goal? active device take?

How does the device detect how
things have changed?

EHE AT ava 11 Stanford University
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Assistive Technology

Active Devices

WARE

WWW.liITtware.com/contact

7 .

LiftWare: https://www.liftware.com/; YouTube link: https://youtu.be/YNwfXelLlgsU
§ sd e 12 Stanford University
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https://www.youtube.com/watch?v=YNwfXeLlqsU
https://www.liftware.com/
https://youtu.be/YNwfXeLlqsU

Assistive Technology

Active Devices - Luke Arm (Mobius Bionics)

"

f ‘ "“

https://www.mobiusbionics.com/luke-arm/. Youtube: https://youtu.be/QGPEmMtwGaZA

EHS AT ava 13 Stanford University
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https://www.youtube.com/watch?v=QGPEmtwGqZA
https://www.mobiusbionics.com/luke-arm/
https://youtu.be/QGPEmtwGqZA

Assistive Technology

Active Devices - Luke Arm (Mobius Bionics)

Shoulder Abduction and
Adduction

Shoulder Flexion and Extension

Luke Arm has up to 10 powered joints

https://www.mobiusbionics.com/luke-arm/

Humeral Rotation

Wrist Pronation and Supination

Thumb Flexion and Extension
Thumb Abduction and

- Adduction
=) ‘”T—WM -
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Elbow Flexion and Extension

Index Finger Flexion and
Extension Flexion and Extension of Other

Fingers

Compound Wrist with combined
ulnar/radial deviation

Assistive Robotics and Manipulation
Laboratory
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https://www.mobiusbionics.com/luke-arm/

Assistive Technology
Active Devices - Modular Prosthetic Limb (MPL) Johns Hopkins APL

https://www.jhuapl.edu/Prosthetics/ResearchMPL YouTube: https://youtu.be/F brnKz 2tl (0-1:30)

An Overview of the Developmental Process for the Modular Prosthetic Limb Johannes et al. Johns Hopkins tech digest 2011

EHE AT ava 15 Stanford University
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https://www.youtube.com/watch?v=F_brnKz_2tI
https://www.jhuapl.edu/Prosthetics/ResearchMPL
https://youtu.be/F_brnKz_2tI

Limitations of Existing Assistive Technology

Traditionally, increased
functionality has required a
degree of invasive
procedures to extract human
input (e.g. Targeted Muscle
Reinnervation (TMR: for
motor control); or Target
Sensory Reinnervation (TSR:
for sensory feedback)

Is there a way to
maintain functionality but
reduce invasiveness?

Assistive Robotics and Manipulation

16

https://youtu.be/GgTwa3CPrIE?t=791.
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(13:15 - 13:41)
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https://www.youtube.com/watch?v=GgTwa3CPrIE
https://youtu.be/GgTwa3CPrIE?t=791

Limitations of Existing Assistive Technology

Design priorities

Does the system perform
as desired and make it
worth use?

Do solutions need to be
severely tailored to every
case or can an adaptable

solution be devised?

Assistive Robotics and Manipulation

Functionality

Aesthetic

17

Is it comfortable for

users?
Comfort

Does the device look
good? Would users
want to use the device?

Stanford University



Limitations of Existing Assistive Technology

Design priorities
User Dissatisfaction with upper-limb prosthesis

Table II. Prosthesis rates of use and rejection.

Prosthesis Currently used Previously used Rejection Rate Primary Prosthesis Interested in future use

Adults
Passive hook 5 19 74% 2% 1%
Passive hand 33 62 47% 18% 10%
Body-powered hook 43 87 51% 32% 2%
Body-powered hand 15 43 65% 3% 3%
Electric hook 13 21 38% 3% 13%
Electric gripper 10 24 58% 1% 10%
Electric hand 58 08 41% 41% 26%
Other 11 19 42% - 11%
None - - i - 25%

Pediatric
Passive hook 2 3 33% 6% 0%
Passive hand 18 46 61% 23% 10%
Body-powered hook 12 23 48% 14% 2%
Body-powered hand 9 17 47% 15% 7%
Electric hook 0 0 E 0% 8%
Electric gripper 0 2 100% 0% 7%
Electric hand 27 42 36% 42% 33%
Other 5 14 64 % - 7%
None - - - - 26%

Elaine Biddiss, Dorcas Beaton & Tom Chau (2007) Consumer design priorities for upper limb prosthetics, Disability and Rehabilitation: Assistive Technology, 2:6, 346-357, DOI: 10.1080/17483100701714733

WV 18 Stanford University

Assistive Robotics and Manipulation
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https://doi.org/10.1080/17483100701714733

Limitations of E

Design priorities
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Assistive Robotics and Manipulation
Laboratory

Myoelectric versus Body-Powered

devices for

Sensory feedback
Functionality
Usage

Comfort

xisting Assistive Technology

Table III. Claimed merits of body-powered and myoelectric prostheses.

Myoelectric (ME)

Body-powered (BP)

Sensory
feedback

Function

Usage

Comfort

Greater feedback due to auditory cues from
motor and vibrations through the close-fitting
socket (Northmore-Ball et al. 1980, Silcox
et al. 1993)

Preferred by the majority of children (64%) for
function (Glynn et al. 1986)

Decreased task difficulty and more frequent
bilateral use (Weaver et al. 1988)

Better grasp of heavy objects (Kruger and
Fishman 1993)

More frequently and actively used (van Lunteren
et al. 1983)

Decrease from full-time to part-time wear upon
exchanging conventional for myoelectric
prostheses in a pediatric sample, possibly due
to weight and durability issues (Balance et al.
1989).

ME wear widely reported in excess of 8 hours per
work day in adult populations (Millstein et al.
1986; Datta et al. 1989; Weaver et al. 1988;
Kejlaa 1993; Wright et al. 1995).

Increased comfort due to freedom from
harness — suggests that the greater the aversion
to the harness, the greater probability that the
ME device will be accepted (Northmore-Ball
et al. 1980; Heger et al. 1985)

Better finger position feedback and object
visibility (Kruger and Fishman 1993)

Better manipulative function (van Lunteren et al.
1983)

Better overall function (voluntary closing
mechanism) (Crandall and Tomhave 2002)

Less inadvertent activation, and less effort
required to open slightly (Kruger and
Fishman 1993)

BP hooks most frequently used (Kruger and
Fishman 1993)

Active users preferred BP while passive users of
active prostheses preferred ME (Kruger and
Fishman 1993)

Only 30% of children used ME for active
prehension and none under the age of 5.

(Kruger and Fishman 1993)

Full-time use of ME rare before adolescence
(Menkveld et al. 1987)

BP hook wear widely reported in excess of 8
hours per work day (Millstein et al. 1986;
Kejlaa 1993; Scotland and Galway 1983;
Weaver et al. 1988; Wright et al. 1995).

BP hands less frequently worn (Millstein et al.
1986; Silcox et al. 1993; Kejlaa et al. 1993;
Gaine et al. 1997)

Reduced weight in comparison with ME
(Northmore-Ball et al. 1980; Heger et al.
1985; Kruger and Fishman 1993)

Reduced noise levels (Kruger and Fishman
1993)

Preferred for overall comfort (Kruger and
Fishman 1993)

19

Biddiss, E. A., & Chau, T. T. (2007). Upper limb prosthesis use and abandonment: A survey of the last 25 years. Prosthetics and Orthotics International, 31(3), 236-257. https://doi.org/10.1080/03093640600994581
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Limitations of Existing Assistive Technology

Design priorities

Table 2. Prosthesis use characteristics.

Body-powered Myoelectric/hybrid Cosmetic
N=334 N=93 N=22
Frequency of prosthesis use
Daily 257 (78.1) 72 (78.3) 14 (63.6)
Weekly 43 (13.1) 8 (8.7) 5(22.7)
. Monthly 14 (4.3) 5(54) 0 (0.0)
Study was performed with veterans to Every few months 11 (3.3) 2 (2.2) | (4.6)
describe and compare satisfaction by | £0 2 thmes per year 4(1.2) > (54) 2(9-1)
_ ] _ Intensity of prosthesis use (h)
prosthesis and terminal device type and to <2 68 (20.6) 12 (13.0) 4(18.2)
identify factors associated with satisfaction S04 29 (8.8) 11(12.0) 2(9-)
4to <8 58 (17.6) 20 (21.7) 5(22.7)
8to <12 64 (19.4) 18 (19.6) 3(13.6)
=2 111 (33.6) 31 (33.7) 8 (36.4)
Most recent prosthesis received
<2years ago 135 (40.4) 53 (57.0) 6 (27.3)
2+ years ago 198 (59.3) 39 (41.9) 16 (72.7)
Unknown | (0.3) [ (1.1) 0 (0.0)
Number of prostheses used
One 229 (68.6) 41 (41.1) 14 (63.6)
Two or more 105 (31.4) 52 (55.9) 8 (36.4)
Number of terminal devices used
One 209 (62.6) 30 (32.3) 17 (77.3)
Two or more 123 (36.8) 60 (64.5) 4 (18.2)
Unknown 2 (0.6) 3(2.9) | (4.7)
Primary type of terminal device used
Body-powered hook 334 (100.0) 0 (0.0) 0 (0.0)
Greifer 0 (0.0) 6 (6.5) 0 (0.0)
Power hook (ETD) 0 (0.0) I5 (16.1) 0 (0.0)
Sensor speed hand 0 (0.0) 9 (9.7 0 (0.0)
I-Limb/Michaelangelo hand/Bebionic hand 0 (0.0) 40 (43.0) 0 (0.0)
Cosmetic 0 (0.0) 0 (0.0) 22 (100.0)
Unknown 0 (0.0) 23 (24.7) 0 (0.0)
DOF of primary terminal device
No DOF (cosmetic) 0 (0.0) 0 (0.0) 22 (100.0)
Single DOF 334 (100.0) 30 (32.3) 0 (0.0)
(Continued)

Resnik, L., Borgia, M., Heinemann, A. W., & Clark, M. A. (2020). Prosthesis satisfaction in a national sample of Veterans with upper limb amputation. Prosthetics and Orthotics International, 44(2), 81-91. https://doi.org/10.1177/0309364619895201
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Limitations of Existing Assistive Technology

Design priorities

Study was performed with veterans to
describe and compare satisfaction by
prosthesis and terminal device type and to
identify factors associated with satisfaction

Resnik, L., Borgia, M., Heinemann, A. W., & Clark, M. A. (2020).
Prosthesis satisfaction in a national sample of Veterans with upper limb

amputation. Prosthetics and Orthotics International, 44(2), 81-91.
https://doi.org/10.1177/0309364619895201

P WAV NN

Assistive Robotics and Manipulation
Laboratory

Table 2. (Continued)

Body-powered Myoelectric/hybrid Cosmetic
N=334 N=93 N=22
Multi-DOF 0 (0.0) 40 (43.0) 0 (0.0)
Unknown 0 (0.0) 23 (24.7) 0 (0.0)
Received training to use initial prosthesis
Yes 254 (76.1) 75 (80.7) Il (50.0)
No 77 (23.1) 18 (19.4) 10 (45.5)
Unknown 3 (0.9 0 (0.0 | (4.9)
Received training to use current prosthesis
Yes 216 (64.7) 75 (76.3) 7 (31.8)
No 113 (33.8) 21 (22.6) 15 (68.2)
Unknown 5(1.5) I (1.1) 0 (0.0)
How many times was your prosthesis repaired in the past |12 months?
0 138 (42.6) 37 (40.2) 12 (57.1)
I 85 (26.2) 14 (15.2) 6 (28.6)
2-3 68 (21.0) 22 (23.9) 3 (14.3)
=4 33 (10.2) 19 (20.7) 0 (0.0)
How many times did you visit a prosthetist for adjustment to your socket in the past 12months?
0 217 (66.4) 49 (53.3) 12 (60.0)
I 42 (12.8) 16 (17.4) 4 (20.0)
2-3 46 (14.1) 19 (20.7) | (5.0)
=4 22 (6.7) 8 (8.7) 3 (15.0)
Prosthetic users with two or more Body-powered Myoelectric/hybrid Cosmetic
prostheses N=98 N=59 N=8
Secondary type of prosthesis used
Body-powered 43 (41.0) 28 (53.9) I (12.5)
Myoelectric/hybrid 50 (47.6) 12 (23.1) 3 (37.5)
Cosmetic I (1.0) I (1.9) 3 (37.5)
Sports/recreation 8 (7.6) 9 (17.3) I (12.5)
Unknown 3(2.9) 2 (3.9) 0 (0.0)
Frequency of secondary prosthesis use
Daily 23 (21.9) 16 (30.8) 4 (50.0)
Weekly 45 (42.9) 22 (42.3) I (12.5)
Monthly 1 (10.5) 5(9.6) I (12.5)
Every few months 12 (11.4) 3 (5.8) 0 (0.0)
| to 2 times per year 14 (13.3) 4 (7.7) 2 (25.0)
Unknown 0 (0.0) 2 (3.9) 0 (0.0)

ETD: electronic terminal devices; DOF: degrees of freedom.
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Limitations of Existing Assistive Technology

Human input

How many advanced human-machine interfaces rely on bio signals to interpret user’s intentions to control the corresponding prosthesis

: . Processing Techniques
Preprocessing Techniques

= Electromyography " Filtering » LDA
" ' » SVM
- Mechanomyography Feature Extraction
= Amplification " NN
= Force Myography Rectification ‘ KNN
Electroneurography » Decomposition / \ 9 = RR-RFF
» Normalizati \\. 4 .
» Electroencephalograhy ormaiization /| QDA
: ® Other & = Other
= Electrocorticography
: (@) b
= Hybrid (©)
AGURE 2. The prevalence of (a) preprocessing and (b) processing

techniques used in EMG-based studies. LDA: linear discriminant analysis;
SVM: support vector machine; NN: neural network; KNN: k-nearest
neighbors; RR-RFF: ridge regression with random Fourier features; QDA:

FIGURE 1. The prevalence of different types of biosignals used as the quadratic discriminant analysis.
basis of HMIs in selected papers.

C. Ahmadizadeh, M. Khoshnam and C. Menon, "Human Machine Interfaces in Upper-Limb Prosthesis Control: A Survey of Techniques for
Preprocessing and Processing of Biosignals," in IEEE Signal Processing Magazine, vol. 38, no. 4, pp. 12-22, July 2021, doi: 10.1109/MSP.2021.3057042.
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Limitations of Existing Assistive Technology

Robotic Autonomy

R WA 23 Stanford University
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Robotics - Thinking Machines

R eV 24 Stanford University
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Overview of Robotics Considerations
See - Think - Act

The Key Elements of Robotics
* See (Perception - sense your environment)
* Think (Planning - given experience what should be done?)

* Act (Execution - perform the action according to the plan)

-"- -.'-- -..‘.'- T
y . . - —
’-4 .\ -
. ' )
' <@ \
[ u
»
o~ A

(- ) [ o

' —> Act o - L, D,
—|—_>L Think —>| Ac J]—» | .
See _

Li, A., Wu, P, & Kennedy lll, M. (2021). Replay Overshooting: Learning Stochastic Latent Dynamics with the Extended

Kalman Filter. IEEE International Conference on Robotics and Automation (ICRA)

R WAV 25 Stanford University
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https://arm.stanford.edu/publications/replay-overshooting-learning-stochastic-latent-dynamics-extended-kalman-filter
https://arm.stanford.edu/publications/replay-overshooting-learning-stochastic-latent-dynamics-extended-kalman-filter

Robotic Perception

Ego or Environment Observation

\N o

Proprioception: sense of embodiment -
perception/awareness of the position and
movement of the body

/ Camera module
LED mount

LED strip

Touch: tactile feedback of environment
(Shown: ARMLab DenseTact sensor)

Gel mount —
Gel with pattern —

Reflective surface ——

Do, W. K., Jurewicz, B., & Kennedy, M. (2022, September). DenseTact 2.0: Optical
Tactile Sensor for Shape and Force Reconstruction. ICRA 2023 accepted

Do, W. K., & Kennedy lll, M. (2022). DenseTact: Optical Tactile
Sensor for Dense Shape Reconstruction. /EEE, 6188-6194.
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Assistive Robotics and Manipulation
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vy interact | % Move Camera [ JsSelect <> FocusCamera == Measure ., 2DPoseEstimate . 2DNavGoal @ PublishPoint < = .

bl () Displays x »® Views
Wl ¥ & Global Options

Fixed Frame camera_link TYpe: | OIbiE (rviz) - Z210

Background Color M 48; 48; 48 v Current View  Orbit (rviz)
Frame Rate 30 Near Clip... 0.01
Default Light & Invert Z Axis [

v v Global Status: Ok Target Fra... <Fixed Frame>
v’ Fixed Frame OK Distance 1.29877

> © Grid & Focal Shap... 0.05

» % PointCloud2 & Focal Shap... &

o > @ image = e Yaw 3.25041

Pitch 0.255399
PointCloud2 i P o » Focal Point  -0.024667;-0.08...
] e -
%l Displays a point cloud from a sensor_msgs::PointCloud2 message as points in the
world, drawn as points, billboards, or cubes. More Information.
Add Duplicate Remove Rename
Save Remove Rename
ROS Elapsed: |224.56 wall Time: |1516893177.61 Wall Elapsed: |224.54 | Experimental
31 fps

Vision: optical observation of the environment

Right Imager IR Projector Left Imager RGB Module

Intel Realsense Camera
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https://arxiv.org/abs/2209.10122
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https://ieeexplore.ieee.org/abstract/document/9811966
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Robotic Intelligence

Ego, Teammate and Task/Environment Modeling

u

‘ _ >——p>class
st;te action '
! A e
t RolAlign . g % /2
Environment s

Reinforcement Learning Paradigm:
What action leads to the best reward?

https://pytorch.org/tutorials/intermediate/torchvision_tutorial.html

left  right Vision interpretation: Shown is a Convolutional
wheedl wheedl right Neural Network (CNN) determining the location of
e Bl people in an image

y v
=

'IR scér;lrareas
Neural Network (multi-layer perceptron) for decision making

https://rimstar.org/science_electronics_projects/neural_networks.htm
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Robotic Action

Analytical versus Data Driven Approaches

Given an observation (z) of an environment state (a person or
task) (s) how does the robot determine what action (a) to take?

Analytical Approach Data Driven Approach

Leverage history of observations (and new observations) to drive

Have an explicit analytical function that behavior in either a supervised or unsupervised paradigm

maps the observation to the action

;= g (Zt)

This form of g( - ) must be known, and may
be hard to adapt to new information

Unsupervised Learning Supervised Learning

Xl Xl

https://towardsdatascience.com/a-brief-introduction-to-unsupervised-learning-20db46445283

R WAV 28 Stanford University
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Robotic Perception

Human Perception

For assistive robotics, the human must be observed either passively (from external
sensors e.g. cameras) or actively (from wearable or implanted sensors)

Brain Computer Gaze detection and
Interfaces (BCI) Augmented Reality (AR)

External Vision

(surface) electromyography (EMG)

I

Joint position/force
detection

Foot pressure sensors

£ 287 &

Stanford University



Robotics Role In Assistive
Technology

g 8ss e 30 Stanford University
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When is Robotics the Best Option?

Robotics serve as a useful tool when the task requires
* High operational complexity (decisions/actions are not obvious)

 Human control/input that is limited for the complexity of the desired task

Cognition Body Dynamics

5 Planner — Controller — Plant T

[\
J Sensory

\ Feedback
& as e .

Assistive Robotics and Manipulation

Feedback «

Stanford University



Robotics Fills the Gap

Wearable Robotics

iti Dynami
Cognition Body Dynamics Particularly for wearables, what

\ part of the human is being

augmented or substituted?

Planner — Controller — Plant
‘ 1. Istherobotic augmentation
functionally adequate?
Feedback

2. Does the presence of the robot
feel ‘natural’ (easy to use)?

Sensory
Feedback

WV 32 Stanford University
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Robotics Fills the Gap

Robotics for Prosthesis: AR + Perception + Planning + Controls
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Hand Prosthesis

Markovic, Marko, et al. "Stereovision and augmented reality for closed-loop control of grasping in hand prostheses." Journal of neural engineering 11.4 (2014): 046001.
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Assistive Robotics and Manipulation Laboratory
Intelligent Wearables - Intelligent Prosthetic Arm

ARMLab Project:
Intelligent Prosthetic Arm
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Assistive Robotics and Manipulation Laboratory
Intelligent Wearables - Intelligent Prosthetic Arm
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Intelligent Wearables - Intelligent Prosthetic Arm

Able-bodied person
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Powered prosthesis
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Intelligent powered prosthesis
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Assistive Robotics and Manipulation Laboratory
Intelligent Wearables - Intelligent Prosthetic Arm

Augmented reality (AR) is a powerful tool allowing the robot to both
extract and present information to the wearer
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Eye gaze vector and
head gaze cone

Object
affordances

Pose, motion of other limb(s) Scene understanding Pose, motion of other agents
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Assistive Robotics and Manipulation Laboratory
Intelligent Wearables - Intelligent Prosthetic Arm

ARMLab Project:
Intelligent Prosthetic Arm Example: IPArm state-machine for ADL
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Assistive Robotics and Manipulation Laboratory
Intelligent Wearables - Intelligent Prosthetic Arm

ARMLab Project:

Intelligent Prosthetic Arm Example: IPArm state-machine for ADL
v
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Assistive Robotics and Manipulation Laboratory
Intelligent Wearables - Intelligent Prosthetic Arm

ARMLab Project:
Intelligent Prosthetic Arm Example: IPArm state-machine for ADL

Fill cup,

replace Start
pitcher /
Replace pitcher
Pitcher grasp fork

Replace pitcher,
grasp cup
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Assistive Robotics and Manipulation Laboratory
Intelligent Wearables - Intelligent Prosthetic Arm

ARMLab Project:
Intelligent Prosthetic Arm Example: IPArm state-machine for ADL
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Assistive Robotics and Manipulation Laboratory
Intelligent Wearables - Intelligent Prosthetic Arm

Object recognition Task understanding
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Assistive Robotics and Manipulation Laboratory
Intelligent Wearables - Intelligent Prosthetic Arm

Gaze tracking | - EMG interpretation
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Assistive Robotics and Manipulation Laboratory
Intelligent Wearables - Intelligent Prosthetic Arm
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Assistive Robotics and Manipulation Laboratory
Intelligent Wearables - Intelligent Prosthetic Arm

ARMLab Project:
Intelligent Prosthetic Arm
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Assistive Robotics and Manipulation Laboratory
Intelligent Wearables - Intelligent Prosthetic Arm

ARMLab Project:
Intelligent Prosthetic Arm
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Physical Teleoperated Arm

BCI (EEG, Intracortical) Robotic Manipulator

Haptic Pressure
Display

Gaze Detection RealSense 5 = -

AR Display — !

Prosthetic 4 pjock in Box
2. Pouring

Manipulator with
ARMLab DenseTact
Tactile Sensor

Relevant previous
observations exist?

IV|1
Scene understanding

Hybrid control of virtual
hand/pointers in AR
(demonstration)
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Assistive Robotics and Manipulation
Laboratory

BCI

AFFORDANCE-BASED CONTROL

Assistive Robotics and Manipulation Laboratory
Intelliaent Wearables - Intelliaent Prosthetic Arm

NOVEL TASK LEARNING
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Assistive Robotics and Manipulation Laboratory
Intelligent Wearables - Intelligent Prosthetic Arm

Guptasarma, S., & Kennedy, M. (2021). Considerations for the Control Design of Augmentative Robots. /[EEE IROS Workshop on Building and Evaluating Ethical Robotic Systems.
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https://www.youtube.com/watch?v=mxTjC2N5D9I
https://arm.stanford.edu/publications/considerations-control-design-augmentative-robots

Assistive Robotics and Manipulation Laboratory
Intelligent Wearables - Fall Prevention Sensor

Cognition Body Dynamics

Planner — Controller — Plant e e.nhancing S
usually improves sensory
feedback concerning the

Feedback world

Sensory
Feedback
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Intelligent Wearables - Fall Prevention Sensor

Motivation:

Falls are the leading cause of fatal and non-fatal injuries in older adults (ages 65+). Can
falls be predicted and mitigated using a wearable sensor that observes the person and
the environment?

Related work:
“The elderly fall risk assessment and prediction based on gait analysis” by Jiang,

Zhang, Wei.
Used wearable accelerometer to sense gait cycle and correlate to wearer fall risk

(conditioned only on gait)

-
Approach:
We observe the persons gait and the surroundings to predict the path the wearer will -
take, their gait over that path and the associated risk of falling given that path and .

gait.

Expected outcomes:
Wearable sensor (with iterative user informed design) capable of predicting wearers

path, gait and stability and warning user when risk of falling is significant.
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Leg Joint Angles
(hip, knee, anide)

Foot Pressure Map

Assistive Robotics and Manipulation Laboratory

Oocupancy Map (tensor):
Tijx € [0,1)
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Assistive Robotics and Manipulation Laboratory
Intelligent Wearables - Fall Prevention Sensor

Future Prediction (path, gait, stability)

Past Observation (path, gait, stability)

Machine Learning
Modeling and Prediction

Inputs

Camera, depth image

Use time series data (state history)
and obstacles to predict the future
states. (AutoEncoder and Recurrent
Neural Networks)

Inertial Measurement Unit
(Acceleration, angular velocity)
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Assistive Robotics and Manipulation Laboratory
Intelligent Wearables - Fall Prevention Sensor
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https://www.youtube.com/watch?v=62OBSb9A1Sg

Intelligent Wearables - Fall Prevention Sensor

? o

Torso Sway Covariance
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Past Trajectory

Assistive Robotics and Manipulation

|

Depth Panorama

Predicted Trajectory

Actual Trajectory

Wang, W., Raitor, M. ., Collins, S., Liu, K. ., & Kennedy, M. Trajectory and Sway Prediction Towards Fall Prevention ICRA 2023 accepted.
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http://arxiv.org/abs/2209.11886

Assistive Robotics and Manipulation Laboratory
Intelligent Wearables - Fall Prevention Sensor
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Torso Sway Covariance

Predicted Trajectory

Past Trajectory Actual Trajectory



https://www.youtube.com/watch?v=I8On2oFcvhY

Summary and Takeaways

* Prosthesis and assistive technology has made many advances over the years,
but many problems exist that are still extremely burdensome for those who

use this technology

e Often there is a tradeoff between performance of traditional assistive
technology and the invasive requirements needed in order to afford the

person a high degree of control

* Robotics (thinking machines) provides a unique opportunity to bridge the gap
between the limitations of non-invasive assistive technology and the complex

tasks through their ability to see, think and act
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Thank you!
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