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Robotic Hardware 
Design

Wang, W., Raitor, M. ., Collins, S., Liu, K. ., & Kennedy, M. Trajectory and 
Sway Prediction Towards Fall Prevention ICRA 2023 accepted.

Do, W. K., Jurewicz, B., & Kennedy, M. (2022, September). DenseTact 2.0: Optical 
Tactile Sensor for Shape and Force Reconstruction. ICRA 2023 accepted 

Do, W. K., & Kennedy III, M. (2022). DenseTact: Optical Tactile 
Sensor for Dense Shape Reconstruction. IEEE, 6188-6194.

Guptasarma, S., & Kennedy, M. 
(2021). Considerations for the Control Design of 
Augmentative Robots. IEEE IROS Workshop on 
Building and Evaluating Ethical Robotic Systems.

Li, A., Wu, P., & Kennedy III, M. (2021). Replay 
Overshooting: Learning Stochastic Latent Dynamics 
with the Extended Kalman Filter. IEEE International 
Conference on Robotics and Automation (ICRA)

Collaborative 
RoboticsRobotic Autonomy

Ng, E., Liu, Z., & Kennedy, M. It Takes Two: 
Learning to Plan for Human-Robot 
Cooperative Carrying. ICRA 2023 Accepted
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Mission
The mission of the Assistive Robotics and Manipulation Lab is to 

develop intelligent, assistive technology that improves human life
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Assistive Robotics and Manipulation Laboratory (ARMLab)
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ARMLab PhD Students



Passive versus Active Assistive 
Devices
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Assistive Technology Design Process

UNDERSTAND
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Assistive Technology
Passive Devices - Body Powered

Arm Dynamics: https://www.armdynamics.com/upper-limb-library/introduction-to-body-powered-prostheses
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https://www.armdynamics.com/upper-limb-library/introduction-to-body-powered-prostheses


Assistive Technology
Passive Devices - Body Powered

https://youtu.be/EodwiLAR3qI (0-40s) 
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https://www.youtube.com/watch?v=EodwiLAR3qI
https://youtu.be/EodwiLAR3qI


Assistive Technology
Passive Devices - Body Powered

https://youtu.be/42mI6kDvPeE  (0-30s) 
Carbon Fiber Reinforced polymer for running prosthesis
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https://youtu.be/42mI6kDvPeE


Assistive Technology
Active Devices

What do you do when input does not passively map to the desired output/action/result? 

Active Control Devices must be employed to reach the target result

What is the 
person’s Goal?

How does the device detect how 
things have changed?

What action should the 
active device take?
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Assistive Technology
Active Devices

LiftWare: https://www.liftware.com/; YouTube link: https://youtu.be/YNwfXeLlqsU  
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https://www.youtube.com/watch?v=YNwfXeLlqsU
https://www.liftware.com/
https://youtu.be/YNwfXeLlqsU


Assistive Technology
Active Devices - Luke Arm (Mobius Bionics)

https://www.mobiusbionics.com/luke-arm/.  Youtube: https://youtu.be/QGPEmtwGqZA
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https://www.youtube.com/watch?v=QGPEmtwGqZA
https://www.mobiusbionics.com/luke-arm/
https://youtu.be/QGPEmtwGqZA


Assistive Technology
Active Devices - Luke Arm (Mobius Bionics)

https://www.mobiusbionics.com/luke-arm/

Luke Arm has up to 10 powered joints
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https://www.mobiusbionics.com/luke-arm/


Assistive Technology
Active Devices - Modular Prosthetic Limb (MPL) Johns Hopkins APL

https://www.jhuapl.edu/Prosthetics/ResearchMPL  YouTube: https://youtu.be/F_brnKz_2tI   (0-1:30)
An Overview of the Developmental Process for the Modular Prosthetic Limb Johannes et al. Johns Hopkins tech digest 2011
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https://www.youtube.com/watch?v=F_brnKz_2tI
https://www.jhuapl.edu/Prosthetics/ResearchMPL
https://youtu.be/F_brnKz_2tI


Limitations of Existing Assistive Technology
Traditionally, increased 

functionality has required a 
degree of invasive 

procedures to extract human 
input (e.g. Targeted Muscle 

Reinnervation (TMR: for 
motor control); or  Target 

Sensory Reinnervation (TSR: 
for sensory feedback)


https://youtu.be/GgTwa3CPrIE?t=791.   (13:15 - 13:41)

Is there a way to 
maintain functionality but 

reduce invasiveness?

16

https://www.youtube.com/watch?v=GgTwa3CPrIE
https://youtu.be/GgTwa3CPrIE?t=791


Limitations of Existing Assistive Technology
Design priorities

Functionality Comfort

Aesthetic

Does the system perform 
as desired and make it 

worth use?


Do solutions need to be 
severely tailored to every 
case or can an adaptable 

solution be devised?

Is it comfortable for 
users?

Does the device look 
good? Would users 

want to use the device?
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Limitations of Existing Assistive Technology
Design priorities

Elaine Biddiss, Dorcas Beaton & Tom Chau (2007) Consumer design priorities for upper limb prosthetics, Disability and Rehabilitation: Assistive Technology, 2:6, 346-357, DOI: 10.1080/17483100701714733 

User Dissatisfaction with upper-limb prosthesis
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https://doi.org/10.1080/17483100701714733


Limitations of Existing Assistive Technology
Design priorities

Myoelectric versus Body-Powered 

devices for 

• Sensory feedback

• Functionality 

• Usage 

• Comfort 

  Biddiss, E. A., & Chau, T. T. (2007). Upper limb prosthesis use and abandonment: A survey of the last 25 years. Prosthetics and Orthotics International, 31(3), 236–257. https://doi.org/10.1080/03093640600994581
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Limitations of Existing Assistive Technology
Design priorities

  Resnik, L., Borgia, M., Heinemann, A. W., & Clark, M. A. (2020). Prosthesis satisfaction in a national sample of Veterans with upper limb amputation. Prosthetics and Orthotics International, 44(2), 81–91. https://doi.org/10.1177/0309364619895201


Study was performed with veterans to 
describe and compare satisfaction by 

prosthesis and terminal device type and to 
identify factors associated with satisfaction
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Limitations of Existing Assistive Technology
Design priorities

  Resnik, L., Borgia, M., Heinemann, A. W., & Clark, M. A. (2020). 
Prosthesis satisfaction in a national sample of Veterans with upper limb 

amputation. Prosthetics and Orthotics International, 44(2), 81–91. 
https://doi.org/10.1177/0309364619895201


Study was performed with veterans to 
describe and compare satisfaction by 

prosthesis and terminal device type and to 
identify factors associated with satisfaction
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Limitations of Existing Assistive Technology
Human input

C. Ahmadizadeh, M. Khoshnam and C. Menon, "Human Machine Interfaces in Upper-Limb Prosthesis Control: A Survey of Techniques for 
Preprocessing and Processing of Biosignals," in IEEE Signal Processing Magazine, vol. 38, no. 4, pp. 12-22, July 2021, doi: 10.1109/MSP.2021.3057042.

How many advanced human-machine interfaces rely on bio signals to interpret user’s intentions to control the corresponding prosthesis
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Limitations of Existing Assistive Technology

Obtaining input from a human can be expensive (computationally) 
and taxing (to the human - cognitive load). How can we provide a 
mechanism that provides high functionality while preserving non-

invasive, low cognitive demand interfacing? 

Robotic Autonomy
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Robotics - Thinking Machines

24



Overview of Robotics Considerations
See - Think - Act

The Key Elements of Robotics


• See (Perception - sense your environment)


• Think (Planning - given experience what should be done?)


• Act (Execution - perform the action according to the plan)

Think

See

Act
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Li, A., Wu, P., & Kennedy III, M. (2021). Replay Overshooting: Learning Stochastic Latent Dynamics with the Extended 
Kalman Filter. IEEE International Conference on Robotics and Automation (ICRA)

https://arm.stanford.edu/publications/replay-overshooting-learning-stochastic-latent-dynamics-extended-kalman-filter
https://arm.stanford.edu/publications/replay-overshooting-learning-stochastic-latent-dynamics-extended-kalman-filter


Robotic Perception
Ego or Environment Observation
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Proprioception: sense of embodiment - 
perception/awareness of the position and 

movement of the body

Touch: tactile feedback of environment

(Shown: ARMLab DenseTact sensor)

Do, W. K., Jurewicz, B., & Kennedy, M. (2022, September). DenseTact 2.0: Optical 
Tactile Sensor for Shape and Force Reconstruction. ICRA 2023 accepted 

Do, W. K., & Kennedy III, M. (2022). DenseTact: Optical Tactile 
Sensor for Dense Shape Reconstruction. IEEE, 6188-6194.

Vision: optical observation of the environment


Intel Realsense Camera

https://arxiv.org/abs/2209.10122
https://arxiv.org/abs/2209.10122
https://ieeexplore.ieee.org/abstract/document/9811966
https://ieeexplore.ieee.org/abstract/document/9811966
https://ieeexplore.ieee.org/abstract/document/9811966


Robotic Intelligence
Ego, Teammate and Task/Environment Modeling
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Reinforcement Learning Paradigm:

What action leads to the best reward? 

https://rimstar.org/science_electronics_projects/neural_networks.htm

Neural Network (multi-layer perceptron) for decision making

Vision interpretation: Shown is a Convolutional 
Neural Network (CNN) determining the location of 

people in an image

https://pytorch.org/tutorials/intermediate/torchvision_tutorial.html



Robotic Action
Analytical versus Data Driven Approaches
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Given an observation (z) of an environment state (a person or 
task) (s) how does the robot determine what action (a) to take?

Analytical Approach Data Driven Approach 

Have an explicit analytical function that 
maps the observation to the action

at = g(zt)
This form of  must be known, and may 

be hard to adapt to new information
g( ⋅ )

https://towardsdatascience.com/a-brief-introduction-to-unsupervised-learning-20db46445283

Leverage history of observations (and new observations) to drive 
behavior in either a supervised or unsupervised paradigm



Robotic Perception
Human Perception
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For assistive robotics, the human must be observed either passively (from external 
sensors e.g. cameras) or actively (from wearable or implanted sensors)

Brain Computer 
Interfaces (BCI)

(surface) electromyography (EMG)

Gaze detection and 
Augmented Reality (AR)

External Vision

Joint position/force 
detection

Foot pressure sensors



Robotics Role in Assistive 
Technology
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When is Robotics the Best Option?
Robotics serve as a useful tool when the task requires


• High operational complexity (decisions/actions are not obvious)


• Human control/input that is limited for the complexity of the desired task
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Robotics Fills the Gap
Wearable Robotics

32



Robotics Fills the Gap
Robotics for Prosthesis: AR + Perception + Planning + Controls
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Markovic, Marko, et al. "Stereovision and augmented reality for closed-loop control of grasping in hand prostheses." Journal of neural engineering 11.4 (2014): 046001.

Hand Prosthesis



Assistive Robotics and Manipulation Laboratory 
Intelligent Wearables - Intelligent Prosthetic Arm
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Assistive Robotics and Manipulation Laboratory 
Intelligent Wearables - Intelligent Prosthetic Arm
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Assistive Robotics and Manipulation Laboratory 
Intelligent Wearables - Intelligent Prosthetic Arm
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Assistive Robotics and Manipulation Laboratory 
Intelligent Wearables - Intelligent Prosthetic Arm
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Assistive Robotics and Manipulation Laboratory 
Intelligent Wearables - Intelligent Prosthetic Arm
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Assistive Robotics and Manipulation Laboratory 
Intelligent Wearables - Intelligent Prosthetic Arm
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Assistive Robotics and Manipulation Laboratory 
Intelligent Wearables - Intelligent Prosthetic Arm
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Assistive Robotics and Manipulation Laboratory 
Intelligent Wearables - Intelligent Prosthetic Arm
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Assistive Robotics and Manipulation Laboratory 
Intelligent Wearables - Intelligent Prosthetic Arm
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Assistive Robotics and Manipulation Laboratory 
Intelligent Wearables - Intelligent Prosthetic Arm
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Assistive Robotics and Manipulation Laboratory 
Intelligent Wearables - Intelligent Prosthetic Arm
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Assistive Robotics and Manipulation Laboratory 
Intelligent Wearables - Intelligent Prosthetic Arm
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Assistive Robotics and Manipulation Laboratory 
Intelligent Wearables - Intelligent Prosthetic Arm
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Assistive Robotics and Manipulation Laboratory 
Intelligent Wearables - Intelligent Prosthetic Arm
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Assistive Robotics and Manipulation Laboratory 
Intelligent Wearables - Intelligent Prosthetic Arm

48

Guptasarma, S., & Kennedy, M. (2021). Considerations for the Control Design of Augmentative Robots. IEEE IROS Workshop on Building and Evaluating Ethical Robotic Systems.

https://www.youtube.com/watch?v=mxTjC2N5D9I
https://arm.stanford.edu/publications/considerations-control-design-augmentative-robots


Assistive Robotics and Manipulation Laboratory 
Intelligent Wearables - Fall Prevention Sensor
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Assistive Robotics and Manipulation Laboratory 
Intelligent Wearables - Fall Prevention Sensor
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Assistive Robotics and Manipulation Laboratory 
Intelligent Wearables - Fall Prevention Sensor

Past Observation (path, gait, stability)
Future Prediction (path, gait, stability)

Machine Learning  
Modeling and Prediction

Use time series data (state history) 
and obstacles to predict the future 

states. (AutoEncoder and Recurrent 
Neural Networks)  

Inputs
Camera, depth image

Inertial Measurement Unit 

(Acceleration, angular velocity)

Outputs
Expected path, gait, stability

Alert user if instability is predicted
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Assistive Robotics and Manipulation Laboratory 
Intelligent Wearables - Fall Prevention Sensor
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https://www.youtube.com/watch?v=62OBSb9A1Sg


Assistive Robotics and Manipulation Laboratory 
Intelligent Wearables - Fall Prevention Sensor
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Wang, W., Raitor, M. ., Collins, S., Liu, K. ., & Kennedy, M. Trajectory and Sway Prediction Towards Fall Prevention ICRA 2023 accepted.

http://arxiv.org/abs/2209.11886


Assistive Robotics and Manipulation Laboratory 
Intelligent Wearables - Fall Prevention Sensor
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Assistive Robotics and Manipulation Laboratory 
Intelligent Wearables - Fall Prevention Sensor
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https://www.youtube.com/watch?v=I8On2oFcvhY


Summary and Takeaways

• Prosthesis and assistive technology has made many advances over the years, 
but many problems exist that are still extremely burdensome for those who 
use this technology


• Often there is a tradeoff between performance of traditional assistive 
technology and the invasive requirements needed in order to afford the 
person a high degree of control


• Robotics (thinking machines) provides a unique opportunity to bridge the gap 
between the limitations of non-invasive assistive technology and the complex 
tasks through their ability to see, think and act
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Thank you!
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