Assignment 2
Chris Potts, Ling 130a/230a: Introduction to semantics and pragmatics, Winter 2020
Distributed Jan 21; due Jan 28

1 neither vs. none [2 points]
In what ways do neither and none differ? Both seem to have ‘negation’ about them, but they are not synonyms. Identify two differences between them. These differences can concern your intuitions about syntactic well-formedness or meaning. Notes:

• For each difference, you'll want to present a pair of sentences that differ only in that one uses neither and the other uses none.

• If well-formedness is the issue, presumably one of the pair will strike you as ungrammatical and the other grammatical. Use the linguist's * to mark the ungrammatical one. In 1–2 sentences, articulate what you see as the nature of the contrast.

• If meaning is the issue, both sentences should be well-formed, but they should differ in what they assume about the context of utterance and/or what they convey. In 1–2 sentences, articulate what you see as the difference(s).

If you are interested in doing this problem in another language, see or write to the staff to discuss that idea — there are lots of options.

2 Exceptives [2 points]
Consider the following proposal for the meaning of the complex determiner every... except Kermit:

(E) \[every... except Kermit = \{ (A,B) : (A - \{\text{Kermit}\}) \subseteq B \} \]

i. Does meaning (E) entail that Kermit is a member of the set A (the restriction)? Explain why or why not (1–2 sentences).

ii. What is your intuition: does a sentence like every Muppet except Kermit danced entail that Kermit is a Muppet?

iii. For a sentence like every Muppet except Kermit danced, does meaning (E) entail that Kermit did not dance?

iv. What is your intuition: does a sentence like every Muppet except Kermit danced entail that Kermit did not dance?
3 A (non-existent) non-conservative determiner

Consider the hypothetical quantificational determiner \(\text{hartig} \):

\[
[\text{hartig}] = \{ \langle A, B \rangle : |A| = |B| \}
\]

Thus, \(\text{hartig} \) \textit{hippos skateboard} would be true just in case the set of hippos had the same cardinality as the set of skateboarders. Show that this hypothetical determiner is not conservative. To do this, you just need to find a counterexample — sets \(A \) and \(B \) that fail the conservativity test when given as arguments to \([\text{hartig}]\) — and explain why those sets constitute a counterexample.

4 Intersective?

Determine whether the complex determiner \textit{less than half}, as defined here, is intersective:

\[
[\text{less than half}] = \left\{ \langle A, B \rangle : \frac{|A \cap B|}{|A|} < \frac{1}{2} \right\}
\]

\textbf{Important note:} this is ‘intersective’ in the sense of the Keenan article and the ‘Quantifiers’ handout, not ‘intersective’ in the sense of the Partee article and our discussion of adjectives.

\textbf{Required ingredients:}

i. Provide a pair of English sentences that supports the classification as intersective or not intersective, along with arrows indicating which entailment relations do and do not hold.

ii. If an entailment relation doesn’t hold, use the definitions of intersectivity and \([\text{less than half}]\) to explain why. The key step here is to identify sets \(A \) and \(B \) for which the entailment fails to hold and use them to construct your argument.

5 Monotonicity

Here is a possible (though not necessarily empirically correct) definition of the quantificational determiner \([\text{few}]\):

\[
[few] = \{ \langle A, B \rangle : |A \cap B| \leq n \}
\]

where \(n \geq 0 \) is a pragmatic free variable (presumably set to a very small integer, though the size might depend on the nature of \(A \) and \(B \)). Diagnose the first (restriction) argument as upward, downward, or nonmonotone, and explain why this holds using \([\text{few}]\). (Note: this isn’t a question about your intuitions, but rather about what we are predicting with \([\text{few}]\).)