1 neither vs. none [3 points]

In what ways do neither and none differ? Both seem to have ‘negation’ about them, but they are not synonyms. Identify three differences between them. These differences can concern your intuitions about syntactic well-formedness or meaning. Notes:

- For each difference, you'll want to present a pair of sentences that differ only in that one uses neither and the other uses none.

- If well-formedness is the issue, presumably one of the pair will strike you as ungrammatical and the other grammatical. Use the linguist's * to mark the ungrammatical one. In 1–2 sentences, articulate what you see as the nature of the contrast.

- If meaning is the issue, both sentences should be well-formed, but they should differ in what they assume about the context of utterance and/or what they convey. In 1–2 sentences, articulate what you see as the difference(s).

If you are interested in doing this problem in another language, see or write to the staff to discuss that idea — there are lots of options.

2 Exceptives [3 points]

Consider the following proposal for the meaning of the complex determiner every... except Kermit:

(E) $[\text{every... except Kermit}] = \{ (A, B) : (A - \{\text{Kermit}\}) \subseteq B \}$

i. Does meaning (E) entail that Kermit is a member of the set A (the restriction)? Explain why or why not (1–2 sentences).

ii. What is your intuition: does a sentence like every Muppet except Kermit danced entail that Kermit is a Muppet?

iii. For a sentence like every Muppet except Kermit danced, does meaning (E) entail that Kermit did not dance?

iv. What is your intuition: does a sentence like every Muppet except Kermit danced entail that Kermit did not dance?
3 Intersective? [2 points]

Determine whether the complex determiner not every, as defined here, is intersective:

\[[not \text{ every}] = \{\langle A, B \rangle : A \not\subseteq B\}\]

Required ingredients:

i. Provide a pair of English sentences that supports the classification as intersective or not intersective, along with arrows indicating which entailment relations do and do not hold.

ii. If an entailment relation doesn’t hold, use the definitions of intersectivity and \[not \text{ every}\] to explain why. The key step here is to identify sets A and B for which the entailment fails to hold and use them to construct your argument.

Notes:

• Phrases with not every are most natural when used in the subject position, as in not every puppy escaped. They are generally marked in other positions (’Chris freed not every puppy).

• This question involves ‘intersective’ in the sense of the Keenan article and the ‘Quantifiers’ handout, not ‘intersective’ in the sense of the Partee article and our discussion of adjectives!

• The statement \(A \not\subseteq B\) means A is not a subset of B, i.e., there is some \(a \in A\) such that \(a \not\in B\).

• It can work to give this argument in terms of real-world properties, but it’s more reliable to use abstract sets like \(\{x, y, z\}\). If you use real properties, make sure you explain what assumptions you are making about them.

4 A (non-existent) non-conservative determiner [2 points]

Consider the hypothetical quantificational determiner uneq:

\[[uneq] = \{\langle A, B \rangle : |A| < |B|\}\]

Thus, uneq hippos skateboard would be true just in case the set of hippos had smaller cardinality than the set of skateboarders. Show that this hypothetical determiner is not conservative. To do this, you just need to find a counterexample — sets A and B that fail the conservativity test when given as arguments to \[\text{uneq}\] — and explain why those sets constitute a counterexample. (As in question (3), we advise using abstract sets like \(\{x, y, z\}\) rather than trying to reason about real properties.)