1 Pragmatically enriching indirect answers [2 points]

In the following small dialogue, there is uncertainty about the extent to which the answer is intended to resolve the question posed:

A: Is Deirdre in her office?
B: Deirdre is sick today.

Identify a piece of contextual information, shared between A and B, that would lead A to conclude that B intended a “yes” answer, and identify another piece of such contextual information that would lead A to conclude that B intended a “no” answer. I’m assuming these pieces of contextual information can be described in a sentence or two each.

2 Crash blossoms [2 points]

A crash blossom is a comically ambiguous headline. Language Log now has a huge collection of them.¹ Some examples:

- Dr. Ruth Discusses Sex with Reporters
- McDonald’s Fries Holy Grail for Potato Farmers
- Juvenile Court to Try Shooting Defendant
- German Factory Orders Slide Unexpectedly
- Missing Woman Remains Found
- Gator Attacks Puzzle Experts
- Violinist linked to JAL Crash Blossoms

John McIntyre identified the origins of the term, I believe.² The headline that inspired it is the last one given above, which makes you wonder how a violinist could cause a crash blossom (whatever that is).

First, articulate the nature of the clash (in the sense of that word from ‘Logic and conversation’) that these examples manifest, with references to specific (sub)maxims. (1–2 sentences.)

Second, comment on why it is surprising, from a Gricean perspective, that we perceive these ambiguities at all. (3–5 sentences.)

¹http://languagelog.ldc.upenn.edu/nll/?cat=118
²http://johnemcintyre.blogspot.com/2009/08/now-we-have-term-for-it.html
3 The pragmatics of allegations [2 points]

The adjective *alleged* is non-subsective in the sense of Partee’s typology of adjectives, and the analysis given on the ‘Semantic composition’ handout (in (15)) reflects this. Here it is repeated for convenience:

\[[\text{alleged}] = \lambda f (\lambda x (T \text{ if someone claimed that } f(x) = T, \text{ else } F)) \]

First, use Grice’s maxims of quantity and quality to explain why it is often misleading for a speaker to say “*X* is an alleged *N*” when they know that *X* is an *N*. Make sure that your account involves close reasoning about the semantic entailments of \([\text{alleged}]\) and the specifics of the maxims of quantity and quality. (4–5 sentences seems about right for this.)

Second, describe a context in which “*X* is an alleged *N*” is not at all misleading even though it is already mutual, public knowledge of all the discourse participants that *X* is an *N*. To make this clear, you’ll need to describe a pretty specific context and, of course, specify at least which *N* is involved. (I think this will take 4–5 sentences, but perhaps it can be done more succinctly.)

4 The pragmatics of universal quantification [2 points]

On the theory of determiners we’ve developed so far, sentences involving the universal quantifier *every* (e.g., *every student danced*) do not entail the corresponding *some* statements (e.g., *some student danced*).

First, articulate why this entailment fails to hold in general, using our semantics for *every* and *some*.

Second, use the Gricean maxim of quantity to explain why saying a sentence like *every* *A* *B* would be disfavored where *some* *A* *B* was known to be false.

5 Quantifiers, entailments, and implicatures [2 points]

A classic Gricean argument is that *few* is semantically consistent with *no* but tends to exclude it pragmatically because of a quality–quantity interaction. (If the speaker of *few* knew that the corresponding *no* statement was true [quality], they would have said so, because it is more informative [quantity].) This argument depends on the semantic claim that *no* entails *few*. Your task is to support this claim, assuming the following set-theoretic meanings (your argument will carry over immediately to the functional view):

- \([\text{few}] = \{(A,B) : \frac{|A \cap B|}{|A|} < k\}\) (where \(0 < k < 1; k\) is a pragmatic free variable)
- \([\text{no}] = \{(A,B) : A \cap B = \emptyset\}\)

In this context, a determiner meaning \(D_1\) entails another determiner \(D_2\) if and only if \([D_1] \subseteq [D_2]\). Thus, your task is simply to show that \([\text{no}] \subseteq [\text{few}]\).