Notes and reminders

• This is due on Mar 20, by 3:15 pm. No late work will be accepted. (This is also the final due date for all late work.)
• You must submit your work electronically via Canvas.
• No collaboration of any kind is permitted. You are, though, free to use your notes and any other reference materials you like.
• Please submit questions to linguist130a-win1819-staff@lists.stanford.edu. Questions sent to individual instructors won’t be answered.

1 Monotonicity [2 points]

Here is a possible (though not necessarily empirically correct) definition of the quantificational determiner $\text{[}\text{most}\text{]}$:

\[
\text{[}\text{most}\text{]} = \left\{ (A, B) : \frac{|A \cap B|}{|A|} > \frac{1}{2} \right\} = \left\{ (A, B) : |A \cap B| > |A - B| \right\}
\]

Diagnose the first (restriction) argument as upward, downward, or nonmonotone, and explain why this holds using $\text{[}\text{most}\text{]}$. (Note: this isn’t a question about your intuitions, but rather about what we are predicting with $\text{[}\text{most}\text{]}$.)

2 Quantifiers and negation [3 points]

Many people have the intuition that few, as in \textit{Few students danced}, is true if and only if the number of students who danced is greater than 0 and below a small number n. In our terms, that would lead to the following denotation:

\[
\text{[}\text{few}\text{]} = (\lambda f \ (\lambda g \ (T \ if \ 0 < |\{w : f(w) = T\} \cap \{w : g(w) = T\}| < n, \ else \ F)))
\]

where n is the small, contextually-determined value. Previously we have assumed that few statements are true in the 0 case.

The issue: what happens when such meanings are negated? Your tasks:

i. Substitute the above lambda expression into the following and perform all possible lambda application steps:

\[
\lambda x \left(\left(\text{[}\text{few}\text{]} \left(\text{[Simpsons]} \right) \right) \left(\lambda y \left(\left(\text{[tease]}(y) \right)(x) \right) \right) \right)
\]
ii. Apply the following negation function to the meaning you obtained above and perform all lambda application steps:
\[\lambda f \ (\lambda z \ (F \ \text{if } f(z) = T, \ \text{else } T)) \]

iii. Is the function you derived in (ii) true of an entity that teased no Simpsons? Your answer here can be a simple “yes” or “no”. You needn’t offer an opinion on whether this outcome is desirable.

3 RSA implicatures

Here is a simple reference game:

<table>
<thead>
<tr>
<th></th>
<th>r₁</th>
<th>r₂</th>
<th>r₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>‘hat’</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>‘glasses’</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>‘mustache’</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

(a) \n
<table>
<thead>
<tr>
<th></th>
<th>r₁</th>
<th>1/3</th>
<th>r₂</th>
<th>1/3</th>
<th>r₃</th>
<th>1/3</th>
</tr>
</thead>
<tbody>
<tr>
<td>‘hat’</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>‘glasses’</td>
<td>0.75</td>
<td>0.25</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>‘mustache’</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(b) P

(c) C

The basic RSA model can be said to predict that a pragmatic listener will draw a particular conversational implicature given this reference game. Here is the table of conditional probabilities representing that listener (with \(\alpha = 1 \)):

<table>
<thead>
<tr>
<th></th>
<th>r₁</th>
<th>r₂</th>
<th>r₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>‘hat’</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>‘glasses’</td>
<td>0.75</td>
<td>0.25</td>
<td>0</td>
</tr>
<tr>
<td>‘mustache’</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Your tasks:

i. Say what that implicature is and how it is manifested in this table of conditional probabilities.

ii. What is the effect on this implicature of changing the prior to \(P(r₂) = 0.2 \) and \(P(r₁) = P(r₃) = 0.4 \)? Provide the pragmatic listener table of conditional probabilities for this scenario (with two digits of precision) and make use of it in giving your answer.

4 Presuppositional determiner

Give a functional denotation for the presuppositional determiner \textit{neither} as used in \textit{Neither parent smokes}. Use the meaning for \textit{both} from the ‘Presupposition’ handout as a model.
5 Partial functions

The following is a partial function over functions defined over the universe \{😊, ☻, ☹, 🎶\}:

\[
\begin{bmatrix}
😊 & ➞ & T \\
☻ & ➞ & F \\
坷 & ➞ & T \\
🎶 & ➞ & F \\
\end{bmatrix} \rightarrow \begin{bmatrix}
😊 & ➞ & T \\
☻ & ➞ & F \\
坷 & ➞ & F \\
🎶 & ➞ & T \\
\end{bmatrix}
\]

Give the value of the above function for the following separate inputs:

i. 😊

\[
\begin{bmatrix}
😊 & ➞ & T \\
☻ & ➞ & F \\
坷 & ➞ & F \\
🎶 & ➞ & F \\
\end{bmatrix}
\]

ii. ☻

\[
\begin{bmatrix}
😊 & ➞ & T \\
☻ & ➞ & F \\
坷 & ➞ & F \\
🎶 & ➞ & F \\
\end{bmatrix}
\]

6 every and presuppositionality

On Assignment 4, you gave a Gricean explanation for why it is generally odd for a speaker to say every A B if they know that [A] is not true of any entities. An alternative analysis would be that every actually presupposes that [A] is true of at least one entity. Your tasks:

i. Formulate this presuppositional [every] as a partial quantificational determiner meaning (same kind of meaning as, e.g., [both]).

ii. Articulate what this analysis predicts about the monotonicity properties of every, and explain why it makes these predictions using a technical argument (same format as in question 1 above).
7 What kind of meaning is this?

The handout ‘Diagnosing different kinds of meaning’ provides a flow-chart for classifying meanings as variously at-issue, conventionally implicated, presupposed, or conversationally implicated. Use that framework to classify meaning \(p \) as expressed in (A).

(A) It’s amazing that Carol ran the marathon.

\(p = \text{Carol ran the marathon} \).

Section 3 of the handout provides model answers. Your own answer could adopt the same format, and we’re looking for a similar level of explanation about the relevant examples.

8 Illocutionary effects

In *Speaking of Crime*, Solan and Tiersma observe that people in police custody often perform the speech act of invoking their right to counsel very indirectly, with utterances like “Maybe I need a lawyer”. Your task: using the properties of illocutionary force given in section 4.2 of the ‘Speech acts’ handout, give two reasons *why* people in custody might behave in this way. (There are a number of sensible reasons that connect with the illocutionary force properties. You can just pick two. We expect each reason to take 2–4 sentences to describe.)

9 Swearing and the FCC

Provide two cogent linguistic or cognitive arguments in favor of the position that swears like the F-word should be subject to different legal restrictions than other kinds of speech. (2–4 sentences per argument; the arguments might not be persuasive to you, but they should make sense!)

10 Extra credit: Object quantifiers

Our theory of composition has (at least) one shocking shortcoming: we are not able to interpret QPs when they are the objects of transitive verbs, but rather only when they are grammatical subjects. We can’t give a meaning to a seemingly simple phrase like *tease every Simpson*! Address the shortcoming by completing the following rule of composition:

\[
(QV) \quad \text{Given a syntactic structure } VP, \quad [VP] = \ \ \\
\quad \quad \quad V \quad QP
\]