Introduction to the Rational Speech Acts model
Chris Potts, Ling 130a/230a: Introduction to semantics and pragmatics, Winter 2018
Feb 20

1 Overview

This handout is meant to be a technical companion to our core RSA reading, Goodman & Frank 2016, which provides relevant background, conceptual motivation, and model details. It's best to study that paper carefully before working with this handout.

2 Reference games

It's very useful to ground RSA calculations in specific reference games:

(1) A reference game is a structure $(R, M, [\cdot], P, C)$, where

 a. R is a set of states (worlds, referents, propositions, etc.).

 b. M is a set of messages.

 c. $[\cdot] : M \rightarrow R \rightarrow \{0, 1\}$ is a semantic interpretation function.

 d. $P : R \rightarrow [0, 1]$ is a prior probability distribution over states.

 e. $C : M \rightarrow \mathbb{R} \leq 0$ is a cost function on messages.

The intuitive idea here is that we have a speaker and a listener in a shared context/game. The speaker is privately assigned a target referent $r^* \in R$, and the speaker's goal is choose a message from M that will lead the listener to pick r^* as the target.

Implicitly, RSA assumes that the speaker and listener would both prefer for the listener to correctly identify r^*. This is a version of the cooperativity assumptions from Grice's work.

The guiding idea behind RSA is that these agents can do better at games like this by reasoning about each other rather than just about the truth conditions built into $[\cdot]$. This connects very deeply with the definition of conversational implicature, which also centers around this back-and-forth reasoning.

3 RSA and Grice

3.1 The RSA model

\[P_{\text{Lit}}(r | m) = \frac{[m](r) \cdot P(r)}{\sum_{r' \in R}[m](r') \cdot P(r')} \]

\[P_S(m | r) = \frac{\exp(\alpha \cdot (\log P_{\text{Lit}}(r | m) + C(m)))}{\sum_{m' \in M} \exp(\alpha \cdot (\log P_{\text{Lit}}(r | m') + C(m')))} \]

\[P_L(r | m) = \frac{P_S(m | r) \cdot P(r)}{\sum_{r' \in R} P_S(m | r') \cdot P(r')} \]

3.2 Simplification where priors are flat, costs are 0, and \(\alpha = 1 \)

\[P_{\text{Lit}}(r | m) = \frac{[m](r)}{\sum_{r' \in R}[m](r')} \]

\[P_S(m | r) = \frac{P_{\text{Lit}}(r | m)}{\sum_{m' \in M} P_{\text{Lit}}(r | m')} \]

\[P_L(r | m) = \frac{P_S(m | r)}{\sum_{r' \in R} P_S(m | r')} \]

3.3 Connections to Grice

We don’t need to reconstruct Grice’s theory, but it’s reassuring that we can make connections.

<table>
<thead>
<tr>
<th>Grice</th>
<th>RSA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quality</td>
<td>All agents assign 0 probability to false utterances.</td>
</tr>
<tr>
<td>Quantity</td>
<td>The speaker favors informative utterances.</td>
</tr>
<tr>
<td>Manner</td>
<td>The cost function (C).</td>
</tr>
<tr>
<td>Relevance</td>
<td>Basic RSA doesn’t engage this directly, though the referent prior helps.</td>
</tr>
</tbody>
</table>

The recursive nature of RSA aligns with the definition of conversational implicature (the speaker believes that the listener believes \ldots).
4 Simple scalar implicature

Figure 1: A communication game supporting a scalar implicature. For the calculations, $\alpha = 1$.

\[
\begin{array}{c|cc}
 & r_1 & r_2 \\
\hline
\text{‘hat’} & 0 & 1 \\
\text{‘glasses’} & 0.5 & 0.5 \\
\end{array}
\]

\[
\begin{array}{c|cc}
 & r_1 & r_2 \\
\hline
\text{‘hat’} & 0 & 1 \\
\text{‘glasses’} & 0.67 & 0.33 \\
\end{array}
\]

\[
\begin{array}{c|cc}
 & r_1 & r_2 \\
\hline
\text{‘hat’} & 0 & 1 \\
\text{‘glasses’} & 0.75 & 0.25 \\
\end{array}
\]

Remark This captures the scalar implicature pattern that a general term will tend to exclude any more specific salient terms. It’s not clear whether this is an explanation based on quantity (informativity) or ambiguity avoidance (manner), but perhaps the distinction doesn’t matter here!

As α gets bigger, the implication gets stronger in the sense that P_r is more certain that ‘glasses’ must pick out r_1 even though it is also true of r_2. Where message costs are all the same, this reduces to the effect of multiplying α by the log of the P_{Lit} values, which affects the differences between values. For example, $1 \log(0.75) - 1 \log(0.25)$ is five times smaller than $5 \log(0.75) - 5 \log(0.25)$.

Figure 2: The effect of the rationality parameter α.

Here are the calculations above in more detail:

(9) Start with the lexicon:

<table>
<thead>
<tr>
<th></th>
<th>(r_1)</th>
<th>(r_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>'hat'</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>'glasses'</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

(10) Normalize the rows (divide each value by the sum of the values in its row):

<table>
<thead>
<tr>
<th></th>
<th>(P_{\text{Lit}})</th>
<th>(r_1)</th>
<th>(r_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>'hat'</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>'glasses'</td>
<td>0.5</td>
<td>0.5</td>
<td></td>
</tr>
</tbody>
</table>

(11) Transpose the matrix so that the states are along the rows:

<table>
<thead>
<tr>
<th></th>
<th>'hat'</th>
<th>'glasses'</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r_1)</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>(r_2)</td>
<td>1</td>
<td>0.5</td>
</tr>
</tbody>
</table>

(12) Normalize the rows:

<table>
<thead>
<tr>
<th></th>
<th>'hat'</th>
<th>'glasses'</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r_1)</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(r_2)</td>
<td>0.67</td>
<td>0.33</td>
</tr>
</tbody>
</table>

(13) Transpose:

<table>
<thead>
<tr>
<th></th>
<th>(P_{\text{Lit}})</th>
<th>(r_1)</th>
<th>(r_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>'hat'</td>
<td>0</td>
<td>0.67</td>
<td></td>
</tr>
<tr>
<td>'glasses'</td>
<td>1</td>
<td>0.33</td>
<td></td>
</tr>
</tbody>
</table>

(14) Normalize the rows:

<table>
<thead>
<tr>
<th></th>
<th>(r_1)</th>
<th>(r_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>'hat'</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>'glasses'</td>
<td>0.75</td>
<td>0.25</td>
</tr>
</tbody>
</table>
5 The role of message costs

Figure 3: A communication game with very high costs on one message. For the calculations, $\alpha = 1$.

\[
P_{\text{Lit}}(r | m) = \frac{[m](r) \cdot P(r)}{\sum_{r' \in R}[m](r') \cdot P(r')}
\]

\[
P_S(m | r) = \frac{\exp(\alpha \cdot (\log P_{\text{Lit}}(r | m) + C(m)))}{\sum_{m' \in M} \exp(\alpha \cdot (\log P_{\text{Lit}}(r | m') + C(m')))}
\]

\[
P_L(r | m) = \frac{P_S(m | r) \cdot P(r)}{\sum_{r' \in R} P_S(m | r') \cdot P(r')}
\]

Increasing the cost of a term (here ‘hat’) lets us model situations where that term is regarded as marked – perhaps too marked to be used. In such situations, that term doesn’t compete with the terms it entails, so the implicature disappears. In the figure, we see that, by $C(‘hat‘) = -7$, P_L doesn’t really treat ‘glasses’ as referring to r_1, because P_L expects ‘glasses’ to be the least marked way of referring to r_2 as well.

Figure 4: Exploring the space of cost functions.
Here are the calculations above in more detail:

(16) Start with the lexicon:

<table>
<thead>
<tr>
<th></th>
<th>r₁</th>
<th>r₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>'hat'</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>'glasses'</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

(17) Normalize the rows:

<table>
<thead>
<tr>
<th>Pₗₑₓ</th>
<th>r₁</th>
<th>r₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>'hat'</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>'glasses'</td>
<td>0.5</td>
<td>0.5</td>
</tr>
</tbody>
</table>

(18) Transpose:

<table>
<thead>
<tr>
<th></th>
<th>'hat'</th>
<th>'glasses'</th>
</tr>
</thead>
<tbody>
<tr>
<td>r₁</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>r₂</td>
<td>1</td>
<td>0.5</td>
</tr>
</tbody>
</table>

(19) Take the log of the values, subtract the costs, and exponentiate:

<table>
<thead>
<tr>
<th></th>
<th>'hat'</th>
<th>'glasses'</th>
</tr>
</thead>
<tbody>
<tr>
<td>r₁</td>
<td>exp(log(0) - 6)</td>
<td>exp(log(0.5) - 0)</td>
</tr>
<tr>
<td>r₂</td>
<td>exp(log(1) - 6)</td>
<td>exp(log(0.5) - 0)</td>
</tr>
</tbody>
</table>

⇒

<table>
<thead>
<tr>
<th></th>
<th>'hat'</th>
<th>'glasses'</th>
</tr>
</thead>
<tbody>
<tr>
<td>r₁</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>r₂</td>
<td>0.0025</td>
<td>0.5</td>
</tr>
</tbody>
</table>

(20) Normalize the rows:

<table>
<thead>
<tr>
<th>Pₛ</th>
<th>'hat'</th>
<th>'glasses'</th>
</tr>
</thead>
<tbody>
<tr>
<td>r₁</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>r₂</td>
<td>0.0049</td>
<td>0.9951</td>
</tr>
</tbody>
</table>

(21) Transpose:

<table>
<thead>
<tr>
<th>Pₗ</th>
<th>r₁</th>
<th>r₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>'hat'</td>
<td>0</td>
<td>0.0049</td>
</tr>
<tr>
<td>'glasses'</td>
<td>1</td>
<td>0.9951</td>
</tr>
</tbody>
</table>

(22) Normalize the rows:

<table>
<thead>
<tr>
<th>Pₗ</th>
<th>r₁</th>
<th>r₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>'hat'</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>'glasses'</td>
<td>0.5012</td>
<td>0.4988</td>
</tr>
</tbody>
</table>
6 The role of the referent prior

![Scenario Image]

(a) Scenario

(b) [Table]

(c) P

(d) C

Figure 5: A communication game with skewed priors. For the calculations, $\alpha = 1$.

<table>
<thead>
<tr>
<th></th>
<th>P_{L}</th>
<th>r_1</th>
<th>r_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>'hat'</td>
<td>0</td>
<td>1</td>
<td>0.7</td>
</tr>
<tr>
<td>'glasses'</td>
<td>0.3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Decreasing the prior on one referent models a situation in which that referent is unlikely in the view of the discourse participants. As this value gets smaller, this referent becomes less relevant, and expected implicatures can disappear. In the figure, we see this happen: if $P(r_1)$ is very low, hearing 'glasses' doesn't necessarily lead P_L to choose r_1 as a referent, because r_1 as a referent is so unlikely in general.

Figure 6: Exploring the space of referent priors.
Here are the calculations above in more detail:

(24) Start with the lexicon:

\[
\begin{array}{cc}
 r_1 & r_2 \\
 \text{'hat'} & 0 & 1 \\
 \text{'glasses'} & 1 & 1 \\
\end{array}
\]

(25) Bring in the prior:

\[
\begin{array}{ccc}
 r_1 & r_2 & \Rightarrow \\
 \text{'hat'} & 0 \cdot 0.3 & 1 \cdot 0.7 \\
 \text{'glasses'} & 1 \cdot 0.3 & 1 \cdot 0.7 \\
\end{array}
\]

(26) Normalize the rows:

\[
\begin{array}{cc}
 P_{\text{Lit}} & r_1 & r_2 \\
 \text{'hat'} & 0 & 1 \\
 \text{'glasses'} & 0.3 & 0.7 \\
\end{array}
\]

(27) Transpose:

\[
\begin{array}{cc}
 \text{'hat'} & \text{'glasses'} \\
 r_1 & 0 & 0.3 \\
 r_2 & 1 & 0.7 \\
\end{array}
\]

(28) Normalize the rows:

\[
\begin{array}{cc}
 P_s & \text{'hat'} & \text{'glasses'} \\
 r_1 & 0 & 1 \\
 r_2 & 0.59 & 0.41 \\
\end{array}
\]

(29) Transpose:

\[
\begin{array}{cc}
 P_{\text{Lit}} & r_1 & r_2 \\
 \text{'hat'} & 0 & 0.59 \\
 \text{'glasses'} & 1 & 0.41 \\
\end{array}
\]

(30) Bring in the prior:

\[
\begin{array}{ccc}
 P_{\text{Lit}} & r_1 & r_2 & \Rightarrow \\
 \text{'hat'} & 0 \cdot 0.3 & 0.59 \cdot 0.7 \\
 \text{'glasses'} & 1 \cdot 0.3 & 0.41 \cdot 0.7 \\
\end{array}
\]

(31) Normalize the rows:

\[
\begin{array}{cc}
 r_1 & r_2 \\
 \text{'hat'} & 0 & 1 \\
 \text{'glasses'} & 0.51 & 0.49 \\
\end{array}
\]
7 Our in-class experiment

For a complete report on the experiment, see the experiment 3 packet:
http://web.stanford.edu/class/linguist130a/surveys/ling130a-survey-2018-implicatures.zip

7.1 Set-up

The materials were displayed on the classroom screen. Participants gave their responses on paper. The materials, response sheets, and raw response tables are available from the class website. 45 students participated.

7.2 Design

The experiment itself involved 15 reference games. In phase 1 of the experiment, participants were in the Speaker role: presented with a scene of three potential referents, participants were asked to try to identify the target referent (boxed) from a highly restrictive vocabulary. The Speaker phase was short and intended mainly to get participants thinking about what it is like to be a speaker in this scenario. In phase 2, participants were in the Listener role. There were again three referents. Below them was a one-word message from the speaker. The task was to try to identify the speaker’s intended referent based on that message.

7.3 Rationale

The experiment allows us to do an informal assessment of the RSA model against data. In particular, in comparing the human responses with the predictions of a literal listener and a pragmatic one, we can support the claim that RSA-style pragmatic inference has value in explaining listener behavior.

7.4 Selected items

Note: purely truth-conditional
7.5 Overall correlation

Over all items, the literal listener has a 0.60 correlation with the mean human responses, whereas
the pragmatic listener has a 0.78 correlation with $\alpha = 1$ and 0.83 with $\alpha = 4$.