Modeling social meaning in probabilistic semantics/pragmatics

Ciyang Qing
Stanford Linguistics

LINGUIST 130A/230A
March 5, 2020

Joint work with Reuben Cohn-Gordon

Introduction

Truth-conditional analysis
Use-conditional meaning
General discussion

Linguistic variation

Linguistic variation is ubiquitous
- Sounds: /tuh-may-toe/ vs /tuh-mah-toe/
- Syntax: I did nothing vs I didn’t do nothing
- Lexical: queue vs line

Variation carries meaning
- Macrosociological categories
- Micro categories within a local community
- Dynamic construction of style

Eckert, Penelope (2012). Three Waves of Variation Study: The Emergence of Meaning in the Study of Sociolinguistic Variation

Macrosociological categories

/tuh-may-toe/ → the speaker is American
/tuh-mah-toe/ → the speaker is British

First wave (Labov, 1966): correlation between linguistic variables and the macrosociological categories of socioeconomic class, sex, class, ethnicity, age . . .

Microsociological categories

Second wave: use ethnographic methods to explore micro categories within a local community

E.g., social categories in Detroit suburban high schools (Eckert 1989)
 - Jocks (∝ middle-class): standard negation
 - Burnouts (∝ working-class): nonstandard negation
Crucially, such categories are not fully determined by parents’ class.

Our working example: (ING)

Variants of (ING)

(1) a. I am working on my paper -ing (velar) variant
 b. I am workin’ on my paper -in’ (apical) variant

Campbell-Kibler (2009): listener’s perception of -ing
 → Sp is educated, articulated... competent
 → Sp is formal, distant... aloof

Labov (2012): Obama’s use of (ING) in three contexts
 - Barbecue: 72% -in’ (casual)
 - Press conference that follows: 33% -in’ (careful)
 - DNC acceptance speech: 3% -in’ (formal)

Dynamic construction of style

The first two waves focus on static categories
 - Variation simply reflects social category
 - A lack of agency

Third wave: speakers actively use variation as part of their stylistic practice
 - Construction of a certain persona in context

Overview

So, what is social meaning?

Lewis’s advice:
 “In order to say what a meaning *is*, we may first ask what a meaning *does*, and then find something that does that”

A case study for this lecture
 - Obama’s use of (ING) at the barbecue: 72% -in’

How to formally represent the social meanings of the two variants of (ING) and model Obama’s use of them?
 - Truth-conditional vs use-conditional approaches
Reference game

<table>
<thead>
<tr>
<th></th>
<th>hat</th>
<th>glasses</th>
</tr>
</thead>
<tbody>
<tr>
<td>j</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>k</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Social Meaning Game as a reference game

Burnett (2019): Sp uses (ING) to convey a persona

<table>
<thead>
<tr>
<th></th>
<th>Stern Leader</th>
<th>Cool Guy</th>
<th>Asshole</th>
<th>Doofus</th>
</tr>
</thead>
<tbody>
<tr>
<td>j</td>
<td>comp. aloof</td>
<td>comp. friendly</td>
<td>incomp. aloof</td>
<td>incomp. friendly</td>
</tr>
<tr>
<td>k</td>
<td>0.3</td>
<td>0.2</td>
<td>0.3</td>
<td>0.2</td>
</tr>
</tbody>
</table>

- *ING*: competent or aloof
- *-in’*: incompetent or friendly

Obama at the barbecue, prior

<table>
<thead>
<tr>
<th></th>
<th>Stern Leader</th>
<th>Cool Guy</th>
<th>Asshole</th>
<th>Doofus</th>
</tr>
</thead>
<tbody>
<tr>
<td>j</td>
<td>comp. aloof</td>
<td>comp. friendly</td>
<td>incomp. aloof</td>
<td>incomp. friendly</td>
</tr>
<tr>
<td>k</td>
<td>0.3</td>
<td>0.2</td>
<td>0.3</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Obama at the barbecue, literal listener

Step 1: Point-wise product \([m(\pi)] \cdot \Pr(\pi)\)

<table>
<thead>
<tr>
<th></th>
<th>Stern Leader</th>
<th>Cool Guy</th>
<th>Asshole</th>
<th>Doofus</th>
</tr>
</thead>
<tbody>
<tr>
<td>j</td>
<td>comp. aloof</td>
<td>comp. friendly</td>
<td>incomp. aloof</td>
<td>incomp. friendly</td>
</tr>
<tr>
<td>k</td>
<td>0.3</td>
<td>0.2</td>
<td>0.3</td>
<td>0.2</td>
</tr>
</tbody>
</table>
Obama at the barbecue, literal listener

Step 2: Normalize each row to get $P_{\text{lit}}(\pi | m)$

<table>
<thead>
<tr>
<th>π</th>
<th>Stern Leader</th>
<th>Cool Guy</th>
<th>Asshole</th>
<th>Doofus</th>
</tr>
</thead>
<tbody>
<tr>
<td>comp. aloof</td>
<td>comp. friendly</td>
<td>incomp. aloof</td>
<td>incomp. friendly</td>
<td></td>
</tr>
<tr>
<td>-ing</td>
<td>0.375</td>
<td>0.25</td>
<td>0.375</td>
<td>0</td>
</tr>
<tr>
<td>-in’</td>
<td>0</td>
<td>0.286</td>
<td>0.428</td>
<td>0.286</td>
</tr>
</tbody>
</table>

Obama at the barbecue, speaker

Step 1: Transpose

<table>
<thead>
<tr>
<th>-ing</th>
<th>-in’</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.375</td>
<td>0</td>
</tr>
<tr>
<td>0.25</td>
<td>0.286</td>
</tr>
<tr>
<td>0.375</td>
<td>0.428</td>
</tr>
<tr>
<td>0</td>
<td>0.286</td>
</tr>
</tbody>
</table>

Step 2: calculate $\exp(\alpha \cdot \log(P_{\text{lit}}(\pi | m)) + C(m))$

- Burnett (2019) assumes $\alpha = 6$ and costs are 0

<table>
<thead>
<tr>
<th>-ing</th>
<th>-in’</th>
</tr>
</thead>
<tbody>
<tr>
<td>sad</td>
<td>0.0028</td>
</tr>
<tr>
<td>smiles</td>
<td>0.00024</td>
</tr>
<tr>
<td>confused</td>
<td>0.0028</td>
</tr>
<tr>
<td>.UN</td>
<td>0</td>
</tr>
</tbody>
</table>

Model’s prediction

$P_S(-\text{in’} | \text{Cool Guy}) = 0.692$

Labov’s (2012) finding

- **Barbecue: 72% -\text{in’}**

Does the model’s prediction capture the empirical data?

<table>
<thead>
<tr>
<th>-ing</th>
<th>-in’</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.308</td>
<td>0.692</td>
</tr>
<tr>
<td>0.311</td>
<td>0.689</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
What does speaker probability mean?

Model's prediction: $P_S(-\text{'in'} \mid \text{Cool Guy}) = 0.692$

- The probability that the speaker will use -\text{'in'} for the first instance of (ING)
- One-shot probability

Labov’s (2012) finding: 72% -\text{'in'} at the barbecue

- Uses of -\text{'in'} constitute 72% of the instances of (ING)
- Long-term frequency

These two are conceptually different.

- The real question for the model: What happens in the long run? (This is not addressed by Burnett)
- What happens after speaker’s first use of -\text{'in'}?

Obama at the barbecue, literal listener

We assume that after hearing -\text{'in'}, $P_{lit}(\pi \mid -\text{'in'})$ becomes the new prior over personae before the second (ING)

- An agent reasons about the agent 1-level below
- Even if we assume $P_{L}(\pi \mid -\text{'in'})$ becomes the new prior, the same problem will arise (exercise)

Obama at the barbecue, prior II

Now we have a second round of the reference game, which is the same as before except that the prior is $P_{lit}(\pi \mid -\text{'in'})$ from the previous round.

porno.png

Obama at the barbecue, literal listener II

(From now on, all the intermediate steps are skipped)

- $P_{lit}(\pi \mid -\text{'in'}) = Pr(\pi)$ (-\text{'in'} is no longer informative!)
Obama at the barbecue, speaker II

- **-ing**
 - Model’s prediction: $P_S(-in' | \text{Cool Guy}) = .118$
 - Obama is very likely to use **-ing** for the second (ING)

- **-in’**
 - 0.5
 - 0.882
 - 0.884
 - 0
 - 0.5
 - 0.118
 - 0.116
 - 1

Obama at the barbecue, literal listener II

- **-ing**
 - 0
 - 0.4
 - 0.6
 - 0

- **-in’**
 - 0
 - 0.286
 - 0.428
 - 0.286

$P_{lit}(\pi | -ing)$ becomes the new prior for the third (ING)

Obama at the barbecue, prior III

Round 3 of the game

<table>
<thead>
<tr>
<th>π</th>
<th>Stern Leader \text{comp. aloof}</th>
<th>Cool Guy \text{comp. friendly}</th>
<th>Asshole \text{incomp. aloof}</th>
<th>Doofus \text{incomp. friendly}</th>
</tr>
</thead>
<tbody>
<tr>
<td>[-ing]</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>[-in’]</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$Pr(\cdot)$</td>
<td>0</td>
<td>0.4</td>
<td>0.6</td>
<td>0</td>
</tr>
</tbody>
</table>

Obama at the barbecue, literal listener III

- **-ing**
 - 0
 - 0.4
 - 0.6
 - 0

- **-in’**
 - 0
 - 0.4
 - 0.6
 - 0

$P_{lit}(\pi | -in’) = P_{lit}(\pi | -ing) = Pr(\pi)$

- Neither variant is informative!
Obama at the barbecue, speaker III

- **ing** - **in’**

- **Model’s prediction**
 \[P_S(-\text{in’} \mid \text{Cool Guy}) = 0.5 \]

 ▶ Obama is equally likely to use **-ing** or **-in’** for the third (ING)

- **What happens next and in the long run?**

Obama at the barbecue, literal listener III

<table>
<thead>
<tr>
<th>♦</th>
<th>Stern Leader</th>
<th>Cool Guy</th>
<th>Asshole</th>
<th>Doofus</th>
</tr>
</thead>
<tbody>
<tr>
<td>comp. aloof</td>
<td>comp. friendly</td>
<td>incomp. aloof</td>
<td>incomp. friendly</td>
<td></td>
</tr>
</tbody>
</table>

\[
\begin{array}{cccc}
\pi & \text{Stern Leader} & \text{Cool Guy} & \text{Asshole} & \text{Doofus} \\
\text{comp. aloof} & 0 & 0.4 & 0.6 & 0 \\
\text{comp. friendly} & 0.4 & 0.6 & 0 & 0 \\
\text{incomp. aloof} & 0.6 & 0 & 0 & 0 \\
\text{incomp. friendly} & 0 & 0 & 0 & 0 \\
\end{array}
\]

\[P_{\text{lit}}(\pi \mid -\text{in’}) = P_{\text{lit}}(\pi \mid -\text{ing}) = \text{Pr}(\pi) \]

▶ The prior will not change for future uses of (ING)

▶ \[P_S(-\text{in’} \mid \text{Cool Guy}) = 0.5 \text{ in the long run} \]

Summary of Burnett’s (2019) model

Key assumptions

▶ A reference game with personae

▶ Social meaning is truth-conditional

Prediction

▶ Chance-level use of either variant in the long run :-(

Problem

▶ Repeated use of the same variant is not informative

▶ A consequence of the truth-conditional analysis

Our proposal

Social meaning as use-conditional meaning

Use-conditional meaning (Kaplan 1999): to know the meaning of **oops** is to know when it is felicitously used, i.e., iff Sp observed a minor mishap

Our probabilistic formulation: to know the meaning of **oops** is to know how likely a normal competent speaker would use it under various circumstances
Our proposal

Instead of

\[P_{\text{lit}}(\pi | m) \propto \Pr(\pi) \cdot [m](\pi) \]

Truth-conditional

Assume a hypothetical stereotypical speaker \(S_0 \)

\[P_{\text{lit}}(\pi | m) \propto \Pr(\pi) \cdot S_0(m | \pi) \]

Use-conditional

\[\begin{array}{cccc}
\pi & \text{Stern Leader} & \text{Cool Guy} & \text{Asshole} & \text{Doofus} \\
\hline
S_0(\text{-ing} | \pi) & 0.7 & 0.3 & 0.1 & 0.01 \\
S_0(\text{-in'} | \pi) & 0.3 & 0.7 & 0.9 & 0.99 \\
\end{array} \]

Obama at the barbecue, prior

Step 1: Calculate \(\Pr(\pi) \cdot S_0(m | \pi) \)

\[\begin{array}{cccc}
\pi & \text{Stern Leader} & \text{Cool Guy} & \text{Asshole} & \text{Doofus} \\
\hline
\text{-ing} & 0.21 & 0.06 & 0.03 & 0.002 \\
\text{-in'} & 0.09 & 0.14 & 0.27 & 0.198 \\
\Pr(\cdot) & 0.3 & 0.2 & 0.3 & 0.2 \\
\end{array} \]

Step 2: Normalize each row

\[\begin{array}{cccc}
\pi & \text{Stern Leader} & \text{Cool Guy} & \text{Asshole} & \text{Doofus} \\
\hline
\text{-ing} & 0.695 & 0.199 & 0.099 & 0.007 \\
\text{-in'} & 0.129 & 0.201 & 0.387 & 0.284 \\
\end{array} \]

Obama at the barbecue, literal listener
Obama at the barbecue, speaker

(Still assuming $\alpha = 6$ and 0 costs)

-\text{ing} -\text{in'}

≈ 1 ≈ 0

Model's prediction

$P_S(-\text{in'} \mid \text{Cool Guy}) = 0.515$

≈ 0

≈ 1

Obama is basically indifferent between -\text{in'} and -\text{ing}$

Suppose he uses -\text{in'}; what happens next?

Obama at the barbecue, literal listener

\begin{align*}
\pi &\quad \text{Stern Leader} & \text{Cool Guy} & \text{Asshole} & \text{Doofus} \\
-\text{ing} & 0.695 & 0.199 & 0.099 & 0.007 \\
-\text{in'} & 0.129 & 0.201 & 0.387 & 0.284
\end{align*}

$P_{\text{in'}}(\pi \mid -\text{in'})$ becomes the new prior for the second (ING)

Obama at the barbecue, prior II

\begin{align*}
\pi &\quad \text{Stern Leader} & \text{Cool Guy} & \text{Asshole} & \text{Doofus} \\
S_0(-\text{ing} \mid \pi) & 0.7 & 0.3 & 0.1 & 0.01 \\
S_0(-\text{in'} \mid \pi) & 0.3 & 0.7 & 0.9 & 0.99 \\
Pr(\cdot) & 0.129 & 0.201 & 0.387 & 0.284
\end{align*}

Obama at the barbecue, literal listener II

\begin{align*}
\pi &\quad \text{Stern Leader} & \text{Cool Guy} & \text{Asshole} & \text{Doofus} \\
-\text{ing} & 0.47 & 0.314 & 0.201 & 0.015 \\
-\text{in'} & 0.048 & 0.174 & 0.431 & 0.348 \\
Pr(\cdot) & 0.129 & 0.201 & 0.387 & 0.284
\end{align*}
Obama at the barbecue, speaker II

(Still assuming $\alpha = 6$ and 0 costs)

-ing -in’

$\approx 1 \approx 0$

Model’s prediction

$P_S(-\text{in’} \mid \text{Cool Guy}) = 0.028$

- Obama is very likely to use -ing
- What happens next if he does?

Obama at the barbecue, literal listener II

π

<table>
<thead>
<tr>
<th>Stern Leader</th>
<th>Cool Guy</th>
<th>Asshole</th>
<th>Doofus</th>
</tr>
</thead>
<tbody>
<tr>
<td>-ing</td>
<td>0.47</td>
<td>0.314</td>
<td>0.201</td>
</tr>
<tr>
<td>-in’</td>
<td>0.048</td>
<td>0.174</td>
<td>0.431</td>
</tr>
</tbody>
</table>

$P_{\text{lit}}(\pi \mid -\text{ing})$ will become the new prior for the third instance of (ING)

Obama at the barbecue, prior III

π

<table>
<thead>
<tr>
<th>Stern Leader</th>
<th>Cool Guy</th>
<th>Asshole</th>
<th>Doofus</th>
</tr>
</thead>
<tbody>
<tr>
<td>-ing</td>
<td>0.7</td>
<td>0.3</td>
<td>0.1</td>
</tr>
<tr>
<td>-in’</td>
<td>0.3</td>
<td>0.7</td>
<td>0.9</td>
</tr>
</tbody>
</table>

$P_{\text{lit}}(\pi \mid -\text{ing})$ will become the new prior for the third instance of (ING)

Obama at the barbecue, literal listener III

π

<table>
<thead>
<tr>
<th>Stern Leader</th>
<th>Cool Guy</th>
<th>Asshole</th>
<th>Doofus</th>
</tr>
</thead>
<tbody>
<tr>
<td>-ing</td>
<td>0.742</td>
<td>0.212</td>
<td>0.045</td>
</tr>
<tr>
<td>-in’</td>
<td>0.253</td>
<td>0.395</td>
<td>0.325</td>
</tr>
</tbody>
</table>

$P_{\text{lit}}(\pi \mid -\text{ing})$ will become the new prior for the third instance of (ING)

- The -in’ variant is still informative!
Obama at the barbecue, speaker III

(Still assuming $\alpha = 6$ and 0 costs)

- ing -in'

<table>
<thead>
<tr>
<th></th>
<th>Stern Leader</th>
<th>Cool Guy</th>
<th>Asshole</th>
<th>Doofus</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.998</td>
<td>0.022</td>
<td>0.023</td>
<td>0.977</td>
<td></td>
</tr>
</tbody>
</table>

Model's prediction $P_{S\,\text{-in'}}(\text{Cool Guy}) = 0.977$

- Obama is very likely to use -in'
- What happens next if he does?
- $\text{in'}, \text{ing}, \text{in'}, \text{?}$

Obama at the barbecue, literal listener III

<table>
<thead>
<tr>
<th></th>
<th>Stern Leader</th>
<th>Cool Guy</th>
<th>Asshole</th>
<th>Doofus</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.742</td>
<td>0.212</td>
<td>0.045</td>
<td>0.0003</td>
<td></td>
</tr>
</tbody>
</table>

$P_{\text{lit}}(\pi | \text{-in'})$ will become the new prior for the fourth instance of (ING)

Obama at the barbecue, prior IV

<table>
<thead>
<tr>
<th></th>
<th>Stern Leader</th>
<th>Cool Guy</th>
<th>Asshole</th>
<th>Doofus</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.539</td>
<td>0.361</td>
<td>0.099</td>
<td>0.001</td>
<td></td>
</tr>
</tbody>
</table>

$S_0(\text{-ing} | \pi)$

<table>
<thead>
<tr>
<th></th>
<th>Stern Leader</th>
<th>Cool Guy</th>
<th>Asshole</th>
<th>Doofus</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.7</td>
<td>0.3</td>
<td>0.1</td>
<td>0.01</td>
<td></td>
</tr>
</tbody>
</table>

$S_0(\text{-in'} | \pi)$

<table>
<thead>
<tr>
<th></th>
<th>Stern Leader</th>
<th>Cool Guy</th>
<th>Asshole</th>
<th>Doofus</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3</td>
<td>0.7</td>
<td>0.9</td>
<td>0.99</td>
<td></td>
</tr>
</tbody>
</table>

$\text{Pr}(\cdot)$

<table>
<thead>
<tr>
<th></th>
<th>Stern Leader</th>
<th>Cool Guy</th>
<th>Asshole</th>
<th>Doofus</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.253</td>
<td>0.395</td>
<td>0.325</td>
<td>0.027</td>
<td></td>
</tr>
</tbody>
</table>

Obama at the barbecue, literal listener IV

<table>
<thead>
<tr>
<th></th>
<th>Stern Leader</th>
<th>Cool Guy</th>
<th>Asshole</th>
<th>Doofus</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.113</td>
<td>0.412</td>
<td>0.436</td>
<td>0.04</td>
<td></td>
</tr>
</tbody>
</table>

$\text{Pr}(\cdot)$

<table>
<thead>
<tr>
<th></th>
<th>Stern Leader</th>
<th>Cool Guy</th>
<th>Asshole</th>
<th>Doofus</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.253</td>
<td>0.395</td>
<td>0.325</td>
<td>0.027</td>
<td></td>
</tr>
</tbody>
</table>

- The -in' variant is still informative!
- This is so even after -in', -ing, -in'
Obama at the barbecue, speaker IV

(Still assuming $\alpha = 6$ and 0 costs)

- ing ≈ 1 ≈ 0
- in' ≈ 0 ≈ 1
- ≈ 0 ≈ 1
- ≈ 0 ≈ 1

Model's prediction

$P_S(\text{in'} | \text{Cool Guy}) = 0.688$

π stem leader cool guy asshole doofus

$S_0(\text{in'} | \pi)$ 0.7 0.3 0.1 0.01
$S_0(\text{in'} | \pi)$ 0.3 0.7 0.9 0.99

The best strategy to convey the Cool Guy persona is to produce -in' at the rate of S_0, i.e., one needs to perform the persona

Properties of expressive content

Potts (2007): Expressives such as damn and bastard

(2) That bastard Kresge is famous

\rightarrow Sp feels negatively about Kresge

\rightarrow largely independent of the descriptive meanings

Independence

\rightarrow always about the utterance situation itself

Non-displaceability

\rightarrow not propositional and can be hard to pin down

Descriptive ineffability

\rightarrow performative in that the very act of utterance conveys the meaning

Immediacy

\rightarrow strengthened when repeated without redundancy

Repeatability

Properties of social meaning

(3) I am working on my paper \rightarrow Sp is competent \rightarrow Sp is aloof

Social meaning formally represented as $S_0(\text{ing | } \pi)$

\rightarrow largely independent of the descriptive meanings

Independence

\rightarrow always about the utterance situation itself

Non-displaceability

\rightarrow not propositional and can be hard to pin down

Descriptive ineffability

\rightarrow performative in that the very act of utterance conveys the meaning

Immediacy

\rightarrow strengthened when repeated without redundancy

Repeatability
Conclusion

Linguistic variation carries meaning
▶ Dynamic construction of style
▶ Can be modeled as a reference game

Social meaning as use-conditional meaning
▶ Parallel to expressive content

Use-conditional meaning in RSA models
▶ Assume a hypothetical stereotypical speaker S_0
▶ $P_{\text{lit}}(\pi \mid m) \propto \Pr(\pi) \cdot S_0(m \mid \pi)$ Use-conditional
▶ $P_{\text{lit}}(\pi \mid m) \propto \Pr(\pi) \cdot [m](\pi)$ Truth-conditional