Linguist 130a/230a: section, week 2

Jan 2024

1 Basic set-theoretic concepts

1.1 Definitions

• A set is a collection of objects.

A set is notated by {}.

For instance, {Richard Montague} is the set that contains Richard Montague.

Alternatively, we can say that Richard Montague is a member or an element of the set {Richard Montague}.

{{Richard Montague}} is the set that contains the set that contains Richard Montague.

• Sets can be empty.

The empty set is notated by \emptyset .

While \emptyset is the empty set, $\{\emptyset\}$ is not the empty set.

 $\{\emptyset\}$ is the set that contains the empty set.

• A difference in the order of elements in a set doesn't change set identity.

 $\{1, 2, 3\} = \{2, 1, 3\}$

• As a set is a collection of objects, multiple occurrences of an element don't change set identity either.

 $\{1, 2\} = \{2, 2, 2, 1, 2\}$

• There are different ways of defining a given set.

We can define a set by enumeration notation, i.e., by enumerating all of its members: $S = \{2\}$

We can also define a set by predicate notation, i.e., by specifying a property for its members in defining the set:

 $S' = \{x: x \text{ is an even prime}\}$

The above can be read as S' is the set that contains all x such that x is an even prime.

Is S = S'?

• To be able to talk about set sizes and comparing them, we introduce the notion of cardinality.

A = {1, 2, 3, 4} contains more things than B = {1, 2}. In other words, A is larger than B.

More specifically, A contains 4 things and B contains 2 things.

Cardinality of a set is notated by | |.

In other words, $|\{1, 2, 3, 4\}|$ tells you the set size of $\{1, 2, 3, 4\}$, which is four.

Where $A = \{1, 2, 3, 4\}, |A| = 4.$

Where $A = \{1, 2, 3, 4\}$ and $C = \{100, 1000\}, |A| > |C|$.

1.2 \in , \subset , and \subseteq relations

• \in notates the membership relation.

If *x* is a member of a set A, then it is true that $x \in A$.

For the set $\{1, 2\}$, it is true that $1 \in \{1, 2\}$.

 \notin notates that \in doesn't hold.

- For the set $\{1, 2\}$, it is true that $3 \notin \{1, 2\}$.
- \subseteq notates the subset relation.

For two sets A and B, A \subseteq B iff for all x, if $x \in A$, then $x \in B$. For the set {1, 2}, it is false that $1 \subseteq \{1, 2\}$, as 1 is not a set. However, for sets {1} and {1, 2}, it is true that {1} \subseteq {1, 2} \subseteq is a reflexive relation. What does this mean? For any set A, it is true for A that A \subseteq A. $\not\subseteq$ notates that \subseteq doesn't hold.

• \subset notates the proper subset relation.

For sets A and B, if $A \subseteq B$ and $B \nsubseteq A$, then $A \subset B$. Take {1, 2} and {1}. {1} \subseteq {1, 2}, but {1, 2} \nsubseteq {1}. Therefore, {1} \subset {1, 2}. Is \subset a reflexive relation? \nsubseteq notates that \subset doesn't hold.

1.3 Operations on sets

• $\mathcal{P}(A)$ notates the power set of A.

 $\mathcal{P}(A)$ is the set that contains all the subsets of A.

If A = $\{1, 2\}$, then $\mathcal{P}(A) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}$

• $A \cap B$ is the intersection of A and B.

 $A \cap B = \{x: x \in A \text{ and } x \in B\}$ Where $A = \{1, 2, 3\}$ and $B = \{1, 2\}$, $A \cap B = \{1, 2\}$.

• $A \cup B$ is the union of A and B.

A \cup B = { $x: x \in$ A or $x \in$ B} Where A = {1, 2, 3} and B = {3, 4, 5}, A \cup B = {1, 2, 3, 4, 5}.

• The complement of a set *X* is the set of all those things that are not in *X*.

Let the universe be such that it contains the entities, dax, wif, lug, and zup, and nothing else. Let $A = \{dax, wif\}$.

Then the complement of A contains lug and zup, notated as $A^{L} = \{ lug, zup \}$.

• We can also talk about complements of a set in another set.

Where A = $\{1, 2, 3, 4\}$ and B = $\{2, 3\}$, the complement of B in A, notated by A – B, is the set of all things in A that are not in B. A – B = $\{1, 4\}$.

2 Exercises

- (1) The following sets are represented in the predicate notation. Convert them to the enumeration notation.
 - a. {3v: v is an even prime number}
 - b. $\{z: z \text{ is an integer and } z > 0 \text{ and } z < 10 \text{ and } z^2 \text{ is a prime number}\}$
 - c. {z: z is an integer and z > 0 and z < 5 and Barack Obama is a former US president}
- (2) The following sets are represented in the enumeration notation. Convert them to the predicate notation.
 - a. $\{1, 2, 3, 4\}$
 - b. $\{2, 3, 5, 7\}$
 - c. {Barack Obama, Donald Trump, Joe Biden}
- (3) Calculate the cardinality of each of the following sets:
 - a. $\{1, 2, 3, 4\}$
 - b. $\{1, 2, \{3, 4\}, 0\}$
 - c. Ø
 - d. $\{\emptyset\}$
 - e. $\{\{1,2\}\}$
 - f. $\{\{1, 2, \{3, 4\}, 5\}, \{6, 7\}, 8\}$
 - g. {3v: v is an even prime number}
- (4) Let A be an arbitrary set. Are the following always true?
 - a. $\varnothing \subset A$
 - b. $\varnothing \subseteq A$
 - $c. \ \, \varnothing \in A$
 - d. $A = \{y : y \in A\}$
 - e. $A = \{y : y \subseteq A\}$
- (5) Write out the power set of each of the following sets:
 - a. {1, 2}
 - b. $\{1, 2, \{3, 4\}, 0\}$
 - c. Ø
 - d. $\{\emptyset\}$
- (6) Calculate the following, writing out the answers in enumeration notation:

- a. $\{1, 0, 3\} \cup \{1, 2, 3\}$
- b. $\{1, 0, 3\} \cap \{2, 4\}$
- c. $\{0, 1, 5\} \{0, 1\}$
- d. $\{0, 1, 5\} \{2, 5, 8\}$
- e. $\{y: y \text{ is not } 3\}^{\complement}$
- (7) Suppose A B = \emptyset . Are the following statements true?
 - a. $A \cup B = B$
 - b. $A \cap B = A$