1. Meanings and Context

LECTURE 1
Set Theory

1. Set Theory Concepts

(1) Basic notions about sets
(a) A set is a group of objects. Any group objects \(a, b, c \) can form a set. The basic way to represent a set is \(\{a, b, c\} \).
(b) If an object \(x \) is a member of a set \(A \), it is denoted by \(x \in A \). If \(b \) is not a member of \(A \), it is denoted by \(x \notin A \).
(c) Sets can include other sets: \(\{a, b, \{c, d\}, \{e, f, g\}\}, \{\{a, b\}, \{a, b\}\} \).
Sets are determined only by their members, not their order.
(d) Sets which contain only one member are called singletons:
\(\{a\}, \{\{a, b\}\} \) are singletons.
(e) A set which contains no members is called the empty set or the null set and is denoted by \(\{\}, \emptyset \).

(2) Relations between sets
(a) If two sets \(A, B \) do not share any common members, they are called disjoint sets: \(\{a, b\} \) and \(\{c, d\} \) are disjoint.
(b) If every member of a set \(A \) is a member of a set \(B \) than \(A \) is a subset of \(B \) and \(B \) is a superset of \(A \). It is denoted by \(A \subseteq B \) and \(B \supseteq A \) respectively. Examples: \(\{a, b, c\} \) is a subset of \(\{a, b, c, d, e\} \). Every set is a subset and a superset of itself: for every set \(A \), \(A \subseteq A \) and \(A \supseteq A \). Every set is a superset of the empty set: for every set \(A \), \(\emptyset \subseteq A \).

(3) Operations in sets
(a) For two sets A,B, the smallest set that contains elements of both sets is called the **union** of A,B and denoted by $A \cup B$. For example, \{a, b, c\} \cup \{c, d, e\} = \{a, b, c, d, e\}

(b) For two sets A,B, the largest set that includes only common elements of A,B is called the **intersection** of A,B and denoted by $A \cap B$. For example, \{a, b, c, d\}\cap\{c, d, e, f\} = \{c, d\}

4. Ways to define sets
 (a) Use capital letters to refer to particular well-known sets: N is the set of all natural numbers, R is the set of rational numbers.
 (b) Abstraction notation: $\{x | \phi(x)\}$ is the set of all entities x such that $\phi(x)$ is true. For example, $A = \{x | \phi(x)\}$, where $\phi(x) = x$ lives in London or $\phi(x) = x \geq 5$.

2. Practice

2.1. Write the following in set notation

 (1) d is a member of B
 (2) the intersection of B and C
 (3) A is a proper subset of B
 (4) the set of all linguists

2.2. Translate the following into idiomatic English

 (1) $\{x | x$ is an Englishman and x studies philosophy$\}$
 (2) $\{x | x$ is a singer and John invited x}$
 (3) $\{x | x$ is an American and x is a linguist$\}$

2.3. Indicate whether the following statements are true or false

 (1) $a \in \{b, a, f\}$
 (2) $f \notin \{b, a, f\}$
 (3) \{a, b, c\} \subseteq \{c, b, a\}
 (4) \{a, b, c\} \subset \{a, b, c\}
 (5) \{a\} $\notin \emptyset$
 (6) \{e, f\} \subset \{d, e, f\}

2.4. Given the following sets: $A = \{2, 4, 5\}; B = \{a, b, c\}; C = \{2, 3, f\}$, what are the following:

 (1) $A \cup C$
 (2) $A \cap B$
LECTURE 1. SET THEORY

3. Homework

3.1. Write the following using set notation:
(1) f is not an element of the union of A and C
(2) A is a set which consists of the members 2, 4, 5
(3) B is included in D
(4) The empty set is a subset of A
(5) The set of all the musicians in the Israel Philharmonic Orchestra

3.2. Indicate whether the following statements are true or false regarding the sets $A = \{k, m, 3, 7\}; B = \{f, g, 7, 3, e\}$
(1) k is an element of $A \cap B$
(2) k is an element of $A \cup B$
(3) $A \cap B$ has two elements
(4) $\{3, 7\} \subset A$
(5) $\{3, 7\} \subseteq A$
(6) $\{3, 7\} \subset (A \cap B)$
(7) $\{m, g\} \subset (A \cup B)$
(8) $\{f, g\} \subset (B - A)$

3.3. Given the following sets: $A = \{8, d, f\}; B = \{1, 7, f, d\}; C = \{a, b, 7, e\}$ what are the following?
(1) $A \cap B$
(2) $A \cup C$
(3) $B \cup \emptyset$
(4) $B - A$
(5) $C \cup (A \cap B)$